REFERENCES

- **1.** A. Bhatia. Lecture Note, "Improving Energy efficincy of Boiler Systems" Continuing Education and Development Inc, New York.
- 2. D. R. Wulfinghoff. "Boiler plant" in *Energy Efficiency Manual*, Wheaton, MD: Energy institute Press, 1999, pp. 44 53.
- 3. T. Sebastian. 'Steam boiler technology". (2nd edition). [on-line]. 2.41. Available:

 http://www.energy.kth.se/compedu/webcompedu/ManualCopy/Steam_Boiler_Technology/Basics_of_steam_generation/basics_of_steam_generation.pdf
 [May 23,.2014]
- **4.** D. D. A. Namal, M. W. Leelarathna, "Sri Lanka Energy Audit Manual". Colombo, Sri Lanka: Sri Lanka Sustainable Energy Authority, 2013, page. 16.
- 5. AB Co Consultants. Thermal Oil Boylers. Still anka.

 http://ocessheagtroptienenaosubaileissan,tutine 05, 2014].

 www.lib.mrt.ac.lk
- **6.** Sigma Thermal. "Thermal Fluid Systems." Internet: http://www.sigmathermal.com/thermal-fluid-systems, 2003 [June 05, 2014]
- 7. Northern Innovation. (2010 March). *Technical Investigation into Thermal Oil Technology*. [On-line]. 01(01). Available: http://secure.investni.com/static/library/invest-ni/documents/thermal-oil-technology-technical-investigation-report-sd-march-2010.pdf [June 05, 2014]
- **8.** Internet:

http://www.energyefficiencyasia.org/energyequipment/typesofboiler.html, 2006 [April 30, 2014]

- 9. CleaverBrooks. "Steam or Hot Water". Internet: http://www.cleaverbrooks.com/Reference-Center/Boiler-Basics/Steam-or-Hot-Water.aspx, [May 03, 2014]
- **10.** Boiler and Heat Exchange Systems Inc. (2000). *The Boiler Book Online*. [Online]. Available: http://rotunds.com/Literature/Boiler%20book.pdf [May 02, 2014].
- **11.** Spirax Sarco. *The Steam and Condensate Loop*. Gloucestershire, UK: Spirax Sarco Limited, 2006, pp 1-8.
- **12.** Productivity Portal of India. "Performance Evaluation of Boilers". Internet: http://www.productivity.in/knowledgebase/Energy%20Management/c.%20Thermal%20Energy%20systems/4.10%20Boilers/4.10.4%20Performance%20Evaluation%20of%20Boilers.pdf, [May 15, 2014].
- 13. M. K. Bora and S. Nakkeeran. "Performance Analysis From The Efficiency Estimation of Coal Fired Boiler". International Journal of Advanced Research, Vol. 02, pp 561 574, May 2014.

 Electronic Theses & Dissertations

 www.lib.mrt.ac.lk
- **14.** Cleaver Brook. "Boiler Efficiency". Internet: http://www.cleaver-brooks.com, [June 16, 2014].
- **15.** P. Kumar. *Training Manual on Energy Efficiency*, Tokyo: Asian Productivity Organization, 2010, pp. 11 20.
- **16.** American Boiler Manufacturers Association. "Determining and Testing Boiler Efficiency for Commercial /Institutional Packaged boilers.", Internet: www.abma.com/determining-and-testing-boiler-efficiency.html, 2008[April 30, 2014].
- **17.** Hydraulic Institute Division of AHRI. "Testing standard method to determine efficiency of commercials space heating boilers". New Jersey, USA. BTS 2000, 2007.

- **18.** British Standard Institute. "Methods for assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids Part 1". UK, BS845-1: 1987.
- **19.** American Society of Mechanical Engineers. "Fired Steam Generators, performance test codes". USA, PTC 4-2008.
- **20.** Indian Standard Institute. "Code for acceptance tests on stationary steam generators of the power station type". India. IS8735-1977.
- **21.** Indian Standard Institute. "Method of calculation of efficiency of packaged boilers". India. IS13979-1994.
- **22.** Indian Standard Institute. "Acceptance tests industrial boilers code of practice". India. IS8980-1995.

University of Moratuwa, Sri Lanka.

- 23. N. M. Muhaisen, R. A. Hokoma, (2012, March). 'Calculating the efficiency of steam boilers' based on its most effecting factors: A case study''. Engineering and technology. [Online]. Vol.6,m pp 46- 49. Available: http://waset.org/publications/15720/calculating-the-efficiency-of-steam-boilers-based-on-its-most-effecting-factors-a-case-study, [May 16, 2014].
- **24.** A. Kaupp. Energy manager Training, "Parameters influencing boiler efficiency".
- **25.** F. D. Lang. "Errors in boiler efficiency standards" PAPER-80 errors in standards in *ASME power conference*, 2009, pp 1-17.
- **26.** A. Senegacnik, L. Kustrin and M. Sekavcnik. "Accuracy Improvement Analysis of the standard indirect method for determining a steam boiler's efficiency." *VDB Power tech*, 12/08, pp 100 106, December 2008.

- **27.** A. Bhatia. PDH online course, "Improving energy efficiency of boiler systems". Fairfax, VA, 2012.
- **28.** Gas India. "Technical Specifications". Internet: http://www.gasindia.in/technical-specification.html, [June 08, 2014].
- **29.** Bureau of Energy Efficiency. "Fuels and combustion", Internet: http://www.beeindia.in/, [May 28, 2014].
- **30.** D.D. Gvozdence, Z. K. Morvay. "Fundamentals for analysis and calculation of energy and environmental performance" in *Applied Industrial energy and environmental Management*. Part III, pp 1-23,
- **31.** Bio mass energy center. "Moisture Contect". Internet: http://www.biomassenergycentre.org.uk/portal/page? pageid=75,177178& d ad=portal& schema=PORTAL, 2011 [June 08, 2014].

APPENDICES

Appendix 1: Semi-structured Questionnaire for Service providers

		1	2	3	4
Organization (Not					
compu	lsory)				
Details of the boiler	Boiler type				
	Design				
	Fuel				
	Rated				
of th	Capacity				
o sl	Design				
etai	Pressure				
Ď	Operating				
	pressure				
STS	Actual Steam				
oile	generation				
n B	rate				
Steam Boilers	Feed Water				
St	Temperature				
oi1	Water / Oil				
Hot water / thermic oil	inlet	a C N I a made-	Cai I a	1a	
	temperaturely	of Moratu	wa, sri La	пка.	
	Waterronic		Dissertatio	ns	
	woutletib.n	ırt.ac.lk			
	temperature				
lot .	Water / oil				
H	Flow rate				
	Actual Fuel				
	firing rate				
	O2 % in flue				
Sis	gas				
<u> </u>	CO2 % in				
Ana	flue gas				
as .	CO % in flue				
D o	gas				
Flue Gas Analy	Average flue				
	gas				
	temperature				
nt	Dry bulb				
Ambient Air	temperature				
Am t	Wet Bulb				
	Temperature				
Surface temperature of boiler					

vel used erating	Tank				
	orientation				
	and shape				
ope ope	Tank				
If feed water tank level used to calculate the operating capacity	Dimensions				
	Level 1				
	Level 2				
ed v	Time				
fee to c	Duration for				
	the trial				
If tank level used to calculate fuel consumption rate	Tank				
	orientation				
	and shape				
	Tank				
	dimensions				
k le fue	Level 1				
tan	Level 2				
If cul	Time for the				
ca	trial				
ırs	Moisture				
oile	content of				
o po	fuel .	CM	Cit	.1	
For biomass boilers	Amount of 1y		wa, Sri La		
	Efficasionic		Dissertatio	ns	
r P	Amount of m	rt.ac.lk			
HO	bottom ash				

Appendix 2: Semi-structured Questionnaire for Boiler Owners

MEng. In Energy Technology University of Moratuwa

Chamila Delpitiya (108153J)

Questionnaire for Final Year Project on 'Commercial and Industrial Boiler Performance Evaluation'

1	Name of the company (Not compulsory)	
2	Location of the company	
3	Manufacturer of the boiler	
4	Design of the boiler	Dry back
5	Type of the boiler	
6	Fuel use	
7	Design Capacity	kg/hr
8	Design Pressure	kW
9	Actual Working pressure	kg/cm ²
10	Actual Working Temperature	°C
11	Actual average working capacit Moratuwa, Sri Lanka.	kg/hr
12	Feed water oil water inlet temperature Dissertations	°C
13	Availability of steam/water/oil flow meter	
14	Availability of feed water/water/oil flow meter	
15	Availability of fuel flow meter / measuring	
	system	
16	Flue gas temperature just after the boiler	°C
17	Availability of economizer	
18	Availability of combustion air pre heater	
19	Temperature of water / oil after economizer	°C
20	Temperature of combustion air after air pre-	
	heater	°C
21	Temperature of flue gas after economizer and APH	°C
	Do you have online efficiency monitoring	C
22	system	
20	Do you have flue gas measuring instrument	
23	installed	
24	If yes, what parameters do you measure?	
25	Do you recover Condensate	
26	If yes, what percentage of the generation is	
20	recovered	

27	Frequency of flue gas analysis	
28	Test Results of the last flue gas analysis,	
	Percentage O2	%
29	Percentage CO2	%
30	Percentage CO	%
31	Flue gas temperature at the time of testing	°C
32	Ambient temperature at the time of testing	°C
33	What is the feed water TDS (After feed water	
33	tank)	
34	Boiler water TDS	ppm
35	Blowdown frequancy	
36	Blowdown duration	Seconds
37	Availability of Continuous Blowdown	
38	If yes, rate of continuous blowdown	
39	Average boiler surface temperature	°C
40	Have you done any analysis to evaluate the	
	efficiency by direct method	
41	If yes, what is the efficiency by direct method	%
42	What is the actual steam to fuel ratio	

