
 A 3D MODEL OF HUMAN

EJACULATORY DUCTS

Chathuri Lakshani Gunasekera

 (138049A)

 Degree of Master of Science

 Department of Electronic and

Telecommunication Engineering.

 University of Moratuwa.

 Sri Lanka.

 May 2017

ii

 A 3D MODEL OF HUMAN

EJACULATORY DUCTS

 Chathuri Lakshani Gunasekera

 (138049A)

 Thesis submitted in partial fulfilment of the requirement for the degree of

Master of Science by Research

 Department of Electronic and Telecommunication Engineering.

 University of Moratuwa.

 Sri Lanka.

 May 2017

iii

DECLARATION OF THE CANDIDATE AND THE SUPERVISOR

“I declare that this is my own work and this thesis/dissertation does not incorporate

without acknowledgment any material previously submitted for a Degree or Diploma

in any other University or Institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.”

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis/dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles and books)”.

Signature: Date:

The above candidate has carried out research for the Master’s thesis/Dissertation under

my supervision.

Signature of the Supervisor: Date:

iv

DEDICATION

To my husband, my parents and my brother…

v

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to all those who provided me the

possibility to complete this dissertation.

Foremost, I would like to express my deepest thanks to my supervisor, Dr. Nuwan

Dayananda for his patience, encouragement and comments which contributed

immensely to this dissertation. It is a pleasure to have known him and I consider myself

lucky for having been his student. I would also like to thank all the faculty members in

the department of Electronic and Telecommunication Engineering, University of

Moratuwa, who helped me in various aspect.

Furthermore, I would also like to thank Dr. Ajith Malalasekera for coming up with this

project idea and for his valuable comments. In addition, I would like to thank Dr. Y.

Mathangasinghe and Dr. D.N. Weerakoon for their valuable support for identifying

boundaries of ducts, urethra and prostate during the segmentation process.

I would like to thank Sudaraka Mallawarachchi, who is currently a doctoral researcher

at Monash University, for his greatest support and effective feedback to make the

outcome of the research a success.

Finally, my warmest thanks would go to my parents, brother and Dr. Sevvandi

Jayakody who motivated to do my PG studies and without their support this wouldn’t

have been a realistic task. I am so much grateful to my husband for his valuable support

during the time of my research.

vi

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE AND THE SUPERVISOR iii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS ... xi

ABSTRACT ... xii

1. INTRODUCTION .. 1

 The Background ... 1

 Research Motivation and Approach. .. 2

1.2.1 Objective ... 2

 Image Processing .. 2

 Image registration techniques ... 4

 Image segmentation techniques ... 4

 Three-dimensional (3D) modelling techniques .. 4

 Models of Prostates and its internal structure .. 5

1.7.1 1st model ... 5

1.7.2 2nd model ... 6

1.7.3 3rd model .. 7

1.7.4 4th model ... 7

2. METHODS ... 8

 Histological Image Slice Acquisition ... 8

 Histological slice registration ... 8

2.2.1 Scaling issue ... 9

 Calibration of images ... 9

 Segmentation of the prostate structures and 3D modelling 10

 Measurements ... 11

3. RESULTS ... 14

 Results of histological slice registration ... 14

 Calibration measurement .. 16

vii

 Segmentation of prostate .. 17

 Measurements ... 17

4. CONCLUSIONS AND FUTURE WORK ... 25

REFERENCES .. 27

APPENDIX – A: MATHLAB CODES ... 29

A.1 Registration-1st step ... 29

A.2 Registration-2nd step ... 34

A.3 Registration Analysis ... 37

A.4 Segmentation .. 39

A.5 Preparation for modelling ... 46

viii

LIST OF TABLES

Table 1: Slice number vs. angle between two ejaculatory ducts as measured from the

urethra for the prstate no. 7. .. 18

Table 2: Slice number vs distance from the urethra to the line joining two ejaculatoy

ducts for the prstate no. 7. ... 19

Table 3: Slice number vs prostate widths for the prostate no. 7. 20

ix

LIST OF FIGURES

Figure 1: Original image (Original in Colour) ... 10

Figure 2: Calibration suqare for the wax block ... 10

Figure 3: Segmentation program GUI ... 11

Figure 4: Angle between the two ejaculatory ducts as measured from the centre of the

prostatic urethra ... 12

Figure 5: The perpendicular distance between the urethra and a line joining

ejaculatory ducts against the distance from the verumontanum. 13

Figure 6: Prostate width (maximum) ... 13

Figure 7: Raw image Figure 8: Cropped and registered images 14

Figure 9: Original, distorted, non-distorted width scaled and non-distorted height

scaled images ... 15

Figure 10: Measured block height:width ratio comparison ... 15

Figure 11: Measured block area comparison ... 16

Figure 12: Calibration of image ... 16

Figure 13: Segmented prostates, Before_ Ducts and Urethra segmentation 17

Figure 14: After_Ducts & Urethra segmentation ... 17

Figure 15: Angle between two ejaculatory ducts as measured from the urethra vs slice

numbers for the prostate no. 7... 18

Figure 16: Distance between the urethra and line joining two ejaculatory ducts vs.

slice number for the prstate no. 7. ... 19

Figure 17: Maximum prostate width.. 20

Figure 18: The angle (θ) between the two ejaculatory ducts as measured from the

centre of the prostatic urethra against the distance from the verumontanum proximally

(height, “a”) in four series of prostates. ... 21

Figure 19: The perpendicular distance (depth, “d”) between the urethra and a line

joining ejaculatory ducts against the distance from the verumontanum proximally

(height, “a”) in six series of prostates. ... 22

Figure 20: Analysis of the first 20 mm of the perpendicular distance (depth) between

the urethra and a line joining ejaculatory ducts against the distance from the

verumontanum upwards (proximally) in six series of prostates. 23

Figure 21: Model of the boundaries of urethra and 2 ducts ... 23

x

Figure 22: Modeled the prostate, Ducts and Urethra – view 1. 24

Figure 23: Modeled the prostate , Ducts and Urethra – view 2. 24

xi

LIST OF ABBREVIATIONS

Abbreviation Description

BPH Benign Prostatic Hyperplasia

TURP Transurethral Resection of Prostate

ASM/AAM framework Atlas segmentation or Active

Shape/Appearance model

RBF Radial basis function

MPGA Multi Population Genetic Algorithm

GA Genetic algorithm

TRE Target registration error

TPS Thin-plate Spline

xii

ABSTRACT

Benign Prostatic Hyperplasia (BPH) is a common non-malignant ailment effecting in

ejaculatory duct of aging men. BPH induces bothersome lower urinary tract symptoms.

The standard treatment for BPH is Transurethral Resection of the Prostate (TURP),

which mitigate urinary symptoms and enhance urinary flow. Smooth sphincter of the

bladder neck accumulates and resides seminal fluid as it reaches the prostatic urethra

before it ejects during ejaculation. Retrograde ejaculation occurs due to removal of this

smooth sphincter of the bladder neck during TURP. Hence, about 53-77% patients

develop retrograde ejaculation after the procedure. The research has shown that

preserving the portion of supramontanal prostatic tissue during TURP leads to preserve

antegrade ejaculation in about 80% of patients. The accuracy of this surgical procedure

could be enhanced by the aid of 3D modelling. A literature survey on the existing

procedures for model construction indicated that further improvements could be

achieved through reconstructing a 3D model. A 3D model will enhance the

understanding of the anatomical relationship of the ejaculatory ducts and prostatic

urethra in cross sections of the prostate gland and to determine a safe zone with the

prostate to remove without damaging the ejaculatory ducts.

We used photographic images of prostates obtained from male cadavers above the age

of fifty years. The prostate samples fixed on to a wax block and uniform 2 mm thick

slices were removed sequentially while taking photographs with a digital camera. Major

steps in constructing a 3D model from the acquired images include: image registration

to align series of slices, segmentation of the prostate, urethra and ducts and 3D

modelling of the segmented structures. A simple landmark based image registration

technique was employed by manually selecting points along the four edges of the wax

block and automatically detecting the vertices of the block using intersections. Then

rotation, translation and scaling were estimated on individual slices to align all the slices.

The prostate was then segmented manually using an existing software tool program.

The ejaculatory ducts and the urethra were segmented using a simple active contour

based segmentation tool. Finally, a 3D mesh model was developed using boundary

points of each of the segmented structure. The following three surgically important

measurements calculated using to the model: the angles of the centre of the left duct, to

the centre of urethra and to the centre of right duct, perpendicular distance from the

centre of urethra to the line joining the two centres of ducts, and width of the prostate.

Results showed a large angle both proximally and distally, 3D relationships of

ejaculatory ducts and urethra depended on the maximum width of the prostate. During

TURP, safe distances to resect the prostate without damaging the ducts are calculated

based on the maximum width of the prostate. Depth can be safely resected without

damaging the ejaculatory ducts. In the future, it is quite essential to test these results on

clinical grounds.

Keywords: Benign Prostatic Hyperplasia (BPH), Transurethral Resection of the

Prostate (TURP), 3D modelling.

1

1. INTRODUCTION

 The Background

Benign Prostatic Hyperplasia (BPH) is the most common urological disease in aging

men [1]. It usually evolves after the age of 40 years. Natural history of BPH can be

divided into two phases: pathological and clinical. The first phase takes place at the

periurethral level with nodular hyperplasia while the second phase exists when enlarged

prostate gland compresses the urethra consequently leads to an increment of resistance

of urine flow [1].

Symptoms of BPH are resistance of urinary flow, urgency, frequency, nocturnal (wake

up to urinate more than once at night), and weak urine stream with incomplete emptying

[2]. TURP is the commonest surgical procedures carried out for treating BPH. TURP

has accounted for 39% of surgical interventions for BPH carried out in the USA in 2008

[3]. In developing countries like Sri Lanka, these rates are much higher. Common

complication of TURP is the loss of antegrade ejaculation [4, 5]. In 1994 and 1997 a

randomized controlled trial had shown the possibility of preserving a portion of

supramontanal prostatic tissue during TURP [6].

BPH is mostly treated by transurethral resection of the prostate (TURP) and other

minimally invasive surgical methods. The use of conventional surgical procedure

diminished by 39% in the USA contrary to a dramatic increase in surgical therapy in

minimal invasive technologies [7]. Approximately 53-77% of patients undergo

retrograde ejaculation which is a complication of TURP procedure [8]. The cause for

the loss of antegrade ejaculation is the destruction of the internal sphincter of the

bladder neck. During TURP, preserving the portion of supramontanal prostatic tissue

lead to preserve the antegrade ejaculation in about 80% of patients [8]. Analysis of

dynamic TRUS assessments of ejaculation has shed a new light which focus to a

coordinated contraction of the prostate and seminal pathways eventually leading to

ejaculation.

The minimally invasive technology for surgeries depends heavily on 3D models. At

present, several models have been developed and are in use [9], [10], [11], [12], [13].

They have assisted partially in determining the anatomical relationships of the

ejaculatory ducts to the prostate, prostatic urethra and verumonotanum by

2

reconstructing a 3D model for ejaculatory ducts. However, existing 3D models are not

adequate in rendering additional information such as anatomical relationship of the

ejaculatory ducts to the prostate, the prostatic urethra and verumontanum. Such

information is important for preserving the antegrade ejaculation in the male patients

who undergo prostatic surgery.

Accordingly, a desk based study was conducted to evaluate the existing models with

the objectives of assessing the anatomical relationship of the ejaculatory ducts and

prostatic urethra in cross sections of the prostate gland. It was also used to evaluate the

morphological variations within the prostate gland and this resulted in developing a

new approach to construct a 3D model of the ejaculatory duct.

 Research Motivation and Approach.

Damages to ejaculatory ducts can be prevented if morphological structure of the

ejaculatory duct is known. Therefore, construction of a 3D model of ejaculatory duct is

necessary to study the morphological structure of the duct. A 3D model of these

structures can be built using image processing techniques such as image registration,

segmentation and 3D modelling of histological images of slices of the prostate.

1.2.1 Objective

The objective of this study is to construct a 3D model of human ejaculatory duct and

its morphological variation within the prostate gland.

 Image Processing

Digital image represents as a 2D function f (x, y) which (x, y) are spatial coordinates.

Digital image refers to the spatial coordinates (x, y) and amplitude of ‘f’ are discrete

values. Digital images are formed of picture elements which are called as pixels. Image

processing refers to manipulation and analysis of information contained in images. The

benefit of image processing is to extract useful information from the raw data.

Fundamental steps in image processing are as follows: image acquisition, image

enhancement, image restoration, image compression, colour image processing,

segmentation, morphological processing, representation and description, recognition,

and knowledge based [14].

3

Image processing allows the user to visualize and segment interested regions from any

cross-sectional (2D) or volumetric (3D) data [15].

Image registration is an essential step in determining the spatial relationship between 2

images under variety of conditions e.g.: employing different sensors, at different time

occurrences, from diverse viewpoints or combination of latter situations [16].

Registration of two images determine the motion that allow moving image into the best

possible alignment with the reference image [16]. There are four critical components

in the development of registration algorithm: feature space, search space, search

strategy and similarity metric [3]. The same image features within the image should be

matched. Search space can also be called as range of transformations. Search strategy

finds the optimum transformation within search space and similarity metric measures

the optimality of a transformation for the chosen feature data set [18]. Transformation

is necessary to identify each 3D point within image which corresponds the location of

the other image. Rigid body transformation changes the position and orientation of the

moving image without changing shape or size [19].

Generic model needs automated pre-processing to establish the surface edge points. 2D

digital images are processed initially to extract the edge points [3], [20]. For all projects

of serial reconstruction, reference points for proper alignments of image slices are

crucial [21], [3].

Image segmentation needs certain amount of user assistance in most cases. Hence,

defining objects iteratively and their visualization during the process are essential to

guide user’s actions for the sub-sequent iteration. During the segmentation, slice

visualization is significant for precise object definition which help immensely for 3D

visualization [10]. During model construction, smooth contours are necessary for easy

manipulation [21]. Accurate model contour initialization is necessary for active contour

model method [3].

There are four basic steps for 3D modelling operation [22].

Pre-processing: Defines the object system. Suppresses unwanted distortions or

enhances some image features important for further processing.

Visualization: Helps viewing and comprehending the structure and dynamics of the

object system. Transforms digital data into images representing information about the

data.

4

Manipulation: Adjusts individual objects or connections among the objects in the object

system. Transforming or altering an image using various methods/techniques to achieve

desired results.

Analysis: Quantifies the morphological and functional information about the system.

Converts image into fundamental components to extract statistical data.

 Image registration techniques

According to P. Markelji et al. 2012 [4], regardless of dimensional correspondence

3D/2D registration methods can be classified as extrinsic, intrinsic or calibration-based.

Intrinsic methods have sub categories such as feature-, intensity- or gradient-based,

while extrinsic methods depend on artificial objects like stereotactic frames, or a small

number or markers attached to frames, dental casts, or implanted into bone soft tissue

or skin affixed. In order to evaluate the registration process quantitatively, researches

altered the optimizers, similarity metrics and interpolators. After the experimental

results, deformable image registration in 3D medical images, can competently

reconstruct a 3D brain from volumetric data [23].

 Image segmentation techniques

Segmentation is one of the major and most challenging steps in image analysis [5]. The

one of segmentation solutions are based on thresholding, region growing [24] or feature

extraction methods [25]. More advanced algorithms are Atlas segmentation or Active

Shape/Appearance Model (ASM/AAM) framework [25] and level set of techniques

[25]. Khlafia et al. [25] employed level set of techniques with shape priors While Huan

et al. [25], proposed Chan-Vase model employing in shaping the model.

 Three-dimensional (3D) modelling techniques

The advantage of 3D model in the medical field is to assist doctors in clinical diagnosis

for teaching purposes for surgical training and for remote operation [26]. Some of the

reconstruction techniques are thresholding operations, minimum production tree

segmentation and morphology and FFD (Free-Form Deformation) method.

5

 Models of Prostates and its internal structure

1.7.1 1st model

Cool D. et al, proposed an approach to construct a patient specific 3D prostate model.

This was done by employing sparse collection of 2D TRUS (transrectal ultrasound)

biopsy images. Semi-automated segmentation technique was used to segment the

prostate. 2D prostate boundaries are acquired from both orthogonal orientations. Then

by employing radial basis function (RBF), 3D prostate surface is fitted.

Surface approximation formula:

s (x) = p
1

(x) +)(
1

i

n

i

i xx


 , x ,3 i ……………………….. Eq. 1

RBF uses a function s: 3  approximates the input function f: 3  , while {f(x

i
):i=1,2,…..,n} which portrays set of input prostate boundary points. p i is 1st order

polynomial. . is an Euclidean norm. rr )( is a biharmonic splines. x
i
 is radial

center.

i is determined by requiring s satisfy interpolation condition.

s (ix) = f (ix), i=1, 2, …,n ……………………………… Eq. 2

Also, side condition:




n

j

ij xq
1

() = 0 for all q 
3

1 ………….…………………… Eq. 3

By minimizing, spline smoothing of s(x) is been achieved:

p
2

s + i

n

i

i xfxs
n

()((
1

1




)) 2 ………………..…………………. Eq. 4

Once both RBF and s (x) are estimated, iso-surfacing technique is employed to develop

the patient’s 3D prostate model. Advantages of this method are large data-free gaps

when interpolating, and RBF is utmost effective and accurate. As the basic function,

Biharmonic splines were employed.

6

1.7.2 2nd model

Cosio F. A. et al. proposed a novel method for automatic segmentation of the prostate

boundary in ultrasound images [12]. This depends on the automatic initialization of an

active shape model [21]. First, Bayes’ classifier employed to perform pixel

classification on the grey level ultrasound images. Next, by using Multi Population

Genetic Algorithm (MPGA) initialized the Active Shape Model (ASM) of the prostate.

This generates a rough approximation of an appropriate initial shape and pose of the

ASM. In the following stage, MGPA is employed on the grey level of the prostate image

and eventually refine the initialization of the ASM. During the last stage, ASM of the

prostate is used to segment the final boundary of the gland.

Theoretically, Bolt et al. (1987) [15] following theorem is used:

s = s + 


10

1k

kk pb ; …………………………………………………… Eq. 5

 is the mean prostate shape, is a principal component vector, is a weight of (-

≤ ≤) and is the Eigen value associate to each .

New prostate shape is generated from the weighted sum of the 10 principal component

vectors, and mean shape, s . Then statistical grey level models can be produced by

taking the pixel profiles perpendicular to the shape model. Hence, correct prostate

boundary is located by sampling at each point of the point distribution model. In order

to reduce the global intensity changes, normal derivative profiles were employed. A

new position is always estimated. A Mahalanobis distance to the corresponding mean

derivative profile is calculated at each position of the search. Hence, optimum position

of the boundary point resides when the Mahalanobis distance is minimum. Even a

Gaussian image pyramid (with four levels) was generated for each training images.

This method is fast, robust and suitable for different organs on different imaging

modalities. Weaknesses of this protocol includes: requirement of more than 2 point on

the prostate from the user, errors generated by convergence of the genetic algorithm

(GA) to local minima and existence of absolute minimum values of the objective

function not corresponding to the prostate boundary images.

s
kp kb kp

3
k kb 3

k k kp

kp

7

1.7.3 3rd model

Histology, paraffin block face and magnetic resonance images of six prostates were

captured. On each image, from 7 to 15 homologous landmarks were labelled. Then, the

researchers manually identified landmarks and quantified the misalignment of

histology sections from the front faces of tissue slices. A particular reconstruction

model is then developed. The reconstruction approach depends on the least-squares

best-fit transformation of selected homologous intrinsic landmarks under various

reconstruction models. Target registration error (TRE) has been used to validate the

reconstruction model. Front face assumption cannot be directly applied because Thin-

plate Spline (TPS) transformation is an interpolating spline and from the front face

assumption, fiducials may i.e. at non-zero depth. Front face assumption can be

determined by projecting the target fiducials and to illustrate a TPS transformation. For

specific transformations like: rigid, similarity and affine; limited least-square fittings of

transformed source fiducials to target fiducials is mathematically equivalent to

unlimiting least squares fitting of transformed source fiducials to the projected target

fiducials. Therefore, front face assumption for the reconstruction is created [28]

Strengths of this parameter-free method are local optima and their accuracy depend on

fiducials. Weakness of this methodology is that if 3D image registration comes after

the reconstruction then that would conflict in isolating, which was not address in this

study.

1.7.4 4th model

The need of image segmentation of Ultrasound images was due to low signal to noise

ratio and significant presence of artefacts of US images. According to Cosio [27], new

method was discovered for automatic segmentation of the boundary of the prostate in

transurethral ultrasound images. Final goal here was to measure the prostate of a patient

intraoperatively during a computer assisted TURP. Therefore, they accurately

constructed a 3D prostate model based on automatic initialization of an active shape

model. Active shape model was initialized in order to perform automatic segmentation

of prostate boundary based on automatic initialization of an active shape model [27].

8

2. METHODS

 Histological Image Slice Acquisition

Self-donated six male cadavers of age above fifty years, were selected from the Sri

Lankan community. First, the selected cadavers placed accordingly and incisions were

made. Then, prostate was harvested along with the seminal vesicle and trigone region

of the bladder. Next, preserved the dissected prostate, pair of seminal vesicles and a

small segment of vas deferens. After that, tissues were processed accordingly. Once the

processed prostate was fixed to the mould in the wax block, cross sections were made

manually with a sharp knife and employed a single uniform force which produced a

slice thickness of 2mm for whole throughout the slices. Following that, cut cross

sections were photographed from a fixed point with a high resolution digital camera.

These images were acquired at the Department of Anatomy University of Colombo.

The Original image, shown in Figure 1, has a dimension of 4288 pixels x 3216 pixels

with a bit depth of 24 and colour representation RGB. The registration procedure

rotated, translated and scaled individual slices to align all the slices. Hence inaccuracies

of point selection, z plane camera distortion, and wax block deformation were corrected

in registering images.

 Histological slice registration

On the assumption, that two consecutive slices should be closely matched, we used a

slice by slice registration to align all slices of each prostate. We fitted lines along all

four edges of the wax block using manually selected points in a pre-defined order.

Vertices were defined automatically suing the intersections of these lines. Using the

four corners as feature points, the moving image slice was rotated, translated and scaled

to align with the preceding slices.

Hence, registration deformations were analysed in two perspectives, e.g.: wax block

height/width and wax block area to confirm whether the registered image had any

distortions.

9

2.2.1 Scaling issue

We have assumed that the wax block is a rigid object. This means that for a given subset

of images, the height to width ratio for all boxes must be the same (ignoring negligible

differences). It was not the case with some data sets due to the inaccuracies of point

selection, z plane camera distortion and wax block deformation (e.g.: inaccuracies in

cross sections, errors in slicing sections).

Distortion was minimized by performing an intensity based registration. However, for

some data sets, after the intensity based registration, images were scaled out of

proportion and hence intensity based rigid registration was not employed. Instead, we

aligned urethra in all slices before making the 3D model. This enabled us to estimate

and visualize important measurements of orientation of structures within the prostate

effectively.

 Calibration of images

Following assumptions have been made during this study

1. Wax block is a square, rigid and

2. Thickness is uniform.

A known distance is measured along the length and width of the wax block (a ruler has

been kept both sides of the block while acquiring images). Then the calibration factor

can be calculated as:

a (cm) / N (pixels)

a = length/width of the wax block

N= Number of pixels

10

Figure 1: Original image (Original in Colour)

Figure 2: Calibration suqare for the wax block

 Segmentation of the prostate structures and 3D modelling

Prostate is manually segmented along the boundary using the active contour method.

By employing an adjustable radius, we manually segmented the Urethra and two ducts

with the assistance of medical professionals. When applying snake following

11

parameters were taken into consideration: image, mask, max iterations, algorithm

(Chan - vese & edge) and smoothness as shown in Figure 3. Finally, a mesh model was

developed using boundary points for Prostate, Urethra and Ejaculatory ducts as shown

in Figures 8 & 9. We made the Urethras align on a line in our prostate 3D model

construction. All anatomical measurements were calculated relative to the aligned

urethra in our 3D prostate model.

Figure 3: Segmentation program GUI

 Measurements

A mesh model was constructed using boundary points for the prostate, ejaculatory

ducts and the urethra. The following measurements were calculated using the model

to evaluate the relative orientation of important sub structures with the prostate.

1. The angle between the two ejaculatory ducts as measured from the centre of the

prostatic urethra. Above mentioned measurement represents the relation

between ejaculatory ducts and urethra as shown in Figure 4. This calculation

was done by using the Cosine rule. In the triangle, all three sides’ distances were

calculated and a particular angle (angle between the two ejaculatory ducts) need

to be determined hence Cosine rule was employed.

2. The perpendicular distance between the urethra and the line joining ejaculatory

ducts against the distance from the verumonatanum, as shown in Figure 5. This

12

is a critical measurement to identify the maximum linear distance surgeons

could go through during the laparoscopic procedure.

3. The maximum prostate width for each set of patients as shown in Figure 6. This

measurement is a direct measurement of the size of the prostate in different

patients.

Eq. 6

Figure 4: Angle between the two ejaculatory ducts as measured from the centre of the

prostatic urethra

Θ=cos 1 (R 1

2 + R 2

2 -d 2)/(2 R1 R 2)

13

Figure 5: The perpendicular distance between the urethra and a line joining ejaculatory

ducts against the distance from the verumontanum.

Figure 6: Prostate width (maximum)

14

3. RESULTS

 Results of histological slice registration

We assumed that the wax block is rigid. Therefore, while maintaining the aspect

ratio of the block, we performed two possible scaling approaches. Such as: scaling

by the height ratio (minimum block height/block height of the current block), and

the width ratio (minimum block width/block width of the current block). Both

approaches, as expected, show the same variation as the original blocks. Due to this

reason, the scaled images are of different sizes as shown in Figure 10. Figure 11

depicts the area for each slice. In both figures, the circles show an acceptable

outcome in terms of registration (matching height: width and block areas). In order

to achieve this, scaling needs to be done separately using both height and width

parameters producing a distorted image. Figure 9 elaborates the distortion as seen

in image 40.

 Figure 7: Raw image Figure 8: Cropped and registered images

15

Figure 9: Original, distorted, non-distorted width scaled and non-distorted height

scaled images

Figure 10: Measured block height:width ratio comparison

16

Figure 11: Measured block area comparison

 Calibration measurement

Calibrated the images from transformed image coordinate to word coordinate using

the ruler on the image is shown in Figure 12. A 5 cm long line was selected on the

ruler to calculate spacing of each pixel.

Figure 12: Calibration of image

17

 Segmentation of prostate

As shown above, prostate had been manually segmented along the boundary as shown

in Figure 13. Then the urethra and two ejaculatory ducts were manually segmented

using a circular cross-sectional template with varying the radius as shown in Figure

14.

Figure 13: Segmented prostates, Before_ Ducts and Urethra segmentation

Figure 14: After_Ducts & Urethra segmentation

 Measurements

Table 1 and Figure 15 depicts the angle between two ejaculatory ducts as measured

from the urethra for the prostate no. 7. Table 2 and Figure 16 illustrates the distance

18

between the urethra and line joining two ejaculatory ducts vs slice number for the

same prostate.

Figure 15: Angle between two ejaculatory ducts as measured from the urethra vs slice

numbers for the prostate no. 7.

Table 1: Slice number vs. angle between two ejaculatory ducts as measured from the

urethra for the prstate no. 7.

 Slice

Number

 Angles(Deg

rees)

 1 89.3425

 2 88.9383

 3 84.3974

 4 83.6339

 5 92.8391

 6 73.6347

 7 74.4222

 8 61.3878

 9 49.6297

 10 41.8201

 11 39.3003

 12 34.3284

 13 37.1937

 14 32.6785

19

Figure 16: Distance between the urethra and line joining two ejaculatory ducts vs.

slice number for the prstate no. 7.

Table 2: Slice number vs distance from the urethra to the line joining two ejaculatoy

ducts for the prstate no. 7.

Slice

Number

 Distance(mm)

 1 13.1695

 2 12.7387

 3 12.2949

 4 11.8278

 5 7.4502

 6 7.7526

 7 6.0333

 8 5.6071

 9 5.1803

 10 4.7953

 11 4.8237

 12 4.2681

 13 3.6519

 14 2.1939

20

Table 3: Slice number vs prostate widths for the prostate no. 7.

Slice

Number

 widths(pixels)

 1 954

 2 1263

 3 1287

 4 1311

 5 1470

 6 1524

 7 1464

 8 1350

 9 1320

 10 1278

 11 1203

 12 1167

 13 1107

 14 1104

Figure 17: Maximum prostate width

21

Calibration factor= true height (mm)\number of pixels

 = [10(mm)\342.41406 (pixels)]

 = 0.0292

Max Prostate width for the prostate no. 7.

 =1524(pixels)*0.0292(mm\pixels)

 = 44.50 mm

Table 3 and Figure 17 exhibits the prostate width vs slice number for for the

prostate no. 7.

Figure 18: The angle (θ) between the two ejaculatory ducts as measured from the

centre of the prostatic urethra against the distance from the verumontanum proximally

(height, “a”) in four series of prostates.

Figure 18 depicts the angle (θ) between the two ejaculatory ducts as measured

from the centre of the prostatic urethra against the distance from the verumontanum

proximally (height, “a”) in four prostates. Prostates no. 1, 2 and 4 have similar patterns,

which have a steep slope at the beginning and then increasing concave up to some extent.

On the other hand, for series 3 the pattern differs slightly which the starting point start

at low value of y and level off to some extent and finally surged to a short distance.

Hence, series 1 has the lowest and series 4 has highest angular variation between two

ejaculatory ducts with respect to the centre of prostatic urethra.

Figure 19 illustrates the perpendicular distance (depth, “d”) between the urethra

and a line joining ejaculatory ducts against the distance from the verumontanum

proximally (height, “a”) in six prostates. Series 1, 2, 5, 6, and 7 increases gradually

22

while series 1 and 6, scatters after the surged. Then series 2, 5, and 7 have a vertex

following the gradual rise and start to decline to a short distance. Therefore, series 5

has the maximum while series 2 has the minimum value for the depth between the

urethra and a line joining the ejaculatory ducts.

Figure 20 is an extraction of the first 20 mm of the perpendicular distance

(depth) between the urethra and a line joining ejaculatory ducts against the distance

from the verumontanum upwards (proximally) in the six prostates in Figure 19. All

series are linear graphs where it rose sharply. Out of all, series 5, 6, and 7 have quite

similar slopes while series 1 has the highest slope on the other hand series 2 has lowest

slope. Therefore, series 1 has the maximum and series 2 has the minimum perpendicular

distance from the urethra to the line joining two ejaculatory ducts. The final outcome

of the 3D model is shown as boundary points in Figure 21 and as surfaces in Figure 22

& 23.

Figure 19: The perpendicular distance (depth, “d”) between the urethra and a line

joining ejaculatory ducts against the distance from the verumontanum proximally

(height, “a”) in six series of prostates.

23

Figure 20: Analysis of the first 20 mm of the perpendicular distance (depth) between

the urethra and a line joining ejaculatory ducts against the distance from the

verumontanum upwards (proximally) in six series of prostates.

Figure 21: Model of the boundaries of urethra and 2 ducts

24

Figure 22: Modeled the prostate, Ducts and Urethra – view 1.

Figure 23: Modeled the prostate , Ducts and Urethra – view 2.

25

4. CONCLUSIONS AND FUTURE WORK

The aim of this dissertation was to build a 3D model of the prostate to

understand the morphological variation of the human ejaculatory duct. Various 3D

reconstruction models for the prostate has been reported in research literature. Initially

we obtained 8 sets of cadavers to construct a 3D model. But set no 6 and 8 were

discarded due to low image quality. Hence, only the remaining data sets were used in

this research.

These models were used to study both shape and size of the prostates. In contrast

to existing 3D models of the prostate, our mesh model was used to estimate the angle

between the two ejaculatory ducts as measured from the centre of the prostatic urethra,

perpendicular distance between the urethra and a line joining ejaculatory ducts against

the distance from the verumontanum, and the maximum prostate width for each set of

patients. Through this model, we were able to study the anatomical relationship of the

ejaculatory ducts and prostatic urethra in cross sections of the prostate gland for the

first time.

The 3D relationship of ejaculatory ducts and prostatic urethra, and safe

distances to resect the prostate without harming the ejaculatory ducts during the surgery

relative to the maximum width of the prostate can be considered extremely useful

clinical findings. After further testing of these values clinically, surgeons could

calculate the amount of periverumontanal prostatic tissue which will eventually

preserve the ejaculatory ducts for forbidding the retrograde ejaculation after TURP

procedure.

This study has few limitations, which can be improved in the future. Firstly,

study was done based on a small sample, a large population required for more

meaningful interpretation. Secondly, the subtle deterioration of the anatomical

relationship may have been intervened with the measurements as we overlapped the

prostatic urethra. Image acquisition itself had scaling, blurring, lighting issues etc. but

image distortion was minimized through image registration. Finally, evidence either on

clinical or histopathological of BPH among study subjects were unavailable to

determine whether observed relationships can be reproduced.

26

In the future, larger studies with carefully designed clinical trials are essential

for the recommendation for the safe distance during TURP of the 3D mesh model

develop for this research can be utilized during such clinical trials.

27

REFERENCES

[1] O. Allkanjari, and A.Vitalone, “What do we know about phytotherapy of benign

prostatic hyperplasia?,” Life Sci., vol. 126, pp. 42–56, 20157

[2] S.A.Kaplan and K.T.Mcvary. Male lower urinary tract system and BPH,2nd ed,

Wiley Blackwell, 2014

[3] Yu X, Elliott SP, Wilt TJ, McBean AM. Practice patterns in benign prostatic

hyperplasia surgical therapy: the dramatic increase in minimally invasive

technologies. J Urol. 2008;180(1):241-5; discussion

[4] Bolt JW, Evans C, Marshall VR. Sexual dysfunction after prostatectomy. Br J

Urol. 1987;59(4):319-22.

[5] Chung A, Woo HH. Preservation of sexual function when relieving benign

prostatic obstruction surgically: can a trade-off be considered? Curr Opin Urol.

2016;26(1):42-8.

[6] Vecchis DE. Preservation of anterograde ejaculation after transurethral resection

of both the prostate and bladder neck. Brit J Urol. 1998;81(6):830-3.

[7] Yu X. , Elliott S.P. ,Wilt T. J., McBean A.M.(2009). Practice patterns in benign

prostatic hyperplasia surgical therapy: the dramatic increase in minimally invasive

technologies. J Urol, 180: 241-245.

[8] Madersbacher S, Marberger M. (1999). Is transurethral resection of the prostate

still justified? Br. J Urol.

[9] Gamage P., Xie S. Q., Delmas P., Xu W. L., (2011). Diagnostic radiograph based

3D bone reconstruction framework: Application to the femur. Comput. Med. Imaging

Graph, 35, 427–437.

[10] P. E. Fadero and M. Shah, “Three dimensional (3D) modelling and surgical

planning in trauma and orthopaedics.,” Surgeon, vol. 12, no. 6, pp. 6–11, 2014.

[11] D. Cool, D. Downey, J. Izawa, J. Chin, and A. Fenster, “3D prostate model

formation from non-parallel 2D ultrasound biopsy images,” Med. Image Anal., vol.

10, pp. 875–887, 2006.

[12] F. a. Cosío, “Automatic initialization of an active shape model of the prostate,”

Med. Image Anal., vol. 12, pp. 469–483, 2008.

[13]A. S. Korsager, U. L. Stephansen, J. Carl, and L. R. Østergaard, “The use of an

active appearance model for automated

[14] V. Singh, “Introduction” in Digital Image Processing with MatLab and LabView,

Bangalore, India, 2013,pp. 2

[15] M. Kwacz, J. Wysocki, and P. Krakowian, “Reconstruction of the 3D Geometry

of the Ossicular Chain Based on Micro-CT Imaging,” Biocybern. Biomed. Eng., vol.

32, no. 1, pp. 27–40, 2012.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20X%5BAuthor%5D&cauthor=true&cauthor_uid=18499180
http://www.ncbi.nlm.nih.gov/pubmed/?term=Elliott%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=18499180
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilt%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=18499180
http://www.ncbi.nlm.nih.gov/pubmed/19376534

28

[16] E. Bermejo, O. Cordón, S. Damas, and J. Santamaría, “A comparative study on

the application of advanced bacterial foraging models to image registration,” Inf. Sci.

(Ny)., vol. 295, pp. 160–181, 2015.

[17] L. Shen, S. Kim, and A. J. Saykin, “Fourier method for large-scale surface

modeling and registration,” Comput. Graph., vol. 33, no. 3, pp. 299–311, 2009.

[18] P. Markelj, D. Tomazevic, B.Likar and F. Pernus. “A review of 3D/2D

registration ethods for image-guided interventions,” Journal of Medical Image

analysis. 16, 2012.

[19] H. Allioui, M. Sadgal and A Elfazzki., “A cooperative approach for 3D image

segmentation”, IEEE, 2016

[20] O. Friman, M. Hindennach, C. Kühnel, and H. O. Peitgen, “Multiple hypothesis

template tracking of small 3D vessel structures,” Med. Image Anal., vol. 14, no. 2, pp.

160–171, 2010.

[21] J. O. Pentecost, J. Icardo, and K. L. Thornburg, “3D computer modeling of

human cardiogenesis.,” Comput. Med. Imaging Graph., vol. 23, pp. 45–49, 1999.

[22] R. Audigier, R. Lotufo, and A. Falcão, “3D visualization to assist iterative object

definition from medical images,” Comput. Med. Imaging Graph., vol. 30, pp. 217–

230, 2006.

[23] H.F.Garc´ıa† et al., “3D Brain Atlas Reconstruction Using Deformable Medical

Image Registration: Application to Deep Brain Stimulation Surgery”. Harvard

publications,

[24] C. Kim, J Yoon and Y.J Lee. “Medical image segmentation by more sensitive

adaptive thresholding”, 2016

[25] A. Skalski, T. Dreweniak, and J. Jakubowski. “Kidney Tumor segmentation and

detection on computed tomography data”. 2016

[26] L. Zhu, Y Li, Y Yu, B Zhang and L Wang. “3D construction for soft tissue of the

human body”, 2016.

[27] Cosio F.A.,”Automatic initialization of an active shape model of prostate,

Medical Imgae Analysis”, 2008

[28] A. Fenster, A. Ward, C. Crukley, E. Gibson, G. Bauman, J. Gómez, J. Chin, M.

Moussa, M. Gaed, and S. Pautler, “3D prostate histology image reconstruction:

Quantifying the impact of tissue deformation and histology section location,” J.

Pathol. Inform., vol. 4, p. 31, 2013.

29

APPENDIX – A: MATHLAB CODES

A.1 Registration-1st step

function varargout = register_new(varargin)
% REGISTER_NEW MATLAB code for register_new.fig
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @register_new_OpeningFcn, ...
 'gui_OutputFcn', @register_new_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before register_new is made visible.
function register_new_OpeningFcn(hObject, eventdata, handles,

varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to register_new (see VARARGIN)

% Choose default command line output for register_new
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes register_new wait for user response (see UIRESUME)
% uiwait(handles.figure1);
varargout{1} = handles.output;
% paths % Running the path setter

global I h w index imdirectory Files currentset impath

index=1;
imdirectory='S1_data/';
Files=dir([imdirectory '/*jpg']);
currentset=Files(index).name;
impath=[imdirectory '/' Files(index).name];
I=imread(impath);

30

[h, w, ~] = size(I);
axes(handles.axes1)
imshow(I)

set(handles.infobox,'String',[currentset ' Loaded....'])

% --- Outputs from this function are returned to the command line.
function varargout = register_new_OutputFcn(hObject, eventdata,

handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

global I h w
% paths
hold on
imshow(I)

[h, w, ~] = size(I);
axes(handles.axes1)

% --- Executes on button press in top.
function top_Callback(hObject, eventdata, handles)
% hObject handle to top (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.axes1)
hold on

for i=1:6
 [x(i),y(i)]=ginput(1);
 plot(x(i),y(i),'r*')
end

global mt ct w
[M]=polyfit(x,y,1);
mt= M(1)
ct= M(2)
xc= 1:w;
yc= mt*xc;
plot(xc, yc+ct, 'b');

% --- Executes on button press in left.
function left_Callback(hObject, eventdata, handles)
% hObject handle to left (see GCBO)

31

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1)
hold on

for i=1:6
 [x(i),y(i)] = ginput(1)
 plot(x(i),y(i),'r*')
end

global ml cl w
[M] = polyfit(x,y,1);
ml= M(1)
cl= M(2)
xc= 1:w;
yc= ml*xc;
plot(xc, yc+cl, 'b');

% --- Executes on button press in right.
function right_Callback(hObject, eventdata, handles)
% hObject handle to right (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.axes1)
hold on

for i=1:6
 [x(i),y(i)]=ginput(1);
 plot(x(i),y(i),'r*')
end

global mr cr w
[M]=polyfit(x,y,1);
mr= M(1)
cr= M(2)
xc= 1:w;
yc= mr*xc;
plot(xc, yc+cr, 'b');

% --- Executes on button press in bottom.
function bottom_Callback(hObject, eventdata, handles)
% hObject handle to bottom (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1)
hold on

for i=1:6
 [x(i),y(i)]=ginput(1);
 plot(x(i),y(i),'r*')
end

32

global mb cb w I J
[M]=polyfit(x,y,1);
mb= M(1)
cb= M(2)
xc= 1:w;
yc= mb*xc;
plot(xc, yc+cb, 'b');

% J=imrotate(I,rad2deg(atan(poly(mb))));
% axes(handles.axes1)
% imshow(J)

% --- Executes on button press in findvert.
function findvert_Callback(hObject, eventdata, handles)
% hObject handle to findvert (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global ml mb mr mt cl cb cr ct currentset Files index corpath ltx lty

rtx rty rbx rby lbx lby
ltx = (cl-ct)/(mt-ml);
lty = ml*ltx+cl;
rtx = (cr-ct)/(mt-mr);
rty = mr*rtx+cr;
rbx = (cr-cb)/(mb-mr);
rby = mr*rbx+cr;
lbx = (cl-cb)/(mb-ml);
lby = ml*lbx+cl;

axes(handles.axes1)
hold on
plot(ltx,lty,'bd','MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',10);

plot(rtx,rty,'cd','MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',10);

plot(rbx,rby,'yd','MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',10);

plot(lbx,lby,'rd','MarkerEdgeColor','k',...
 'MarkerFaceColor',[.49 1 .63],...
 'MarkerSize',10);

rot_angle = rad2deg(atan(mb));
corpath = 'RESULTS\Variables\NewResearch_1mm_S1\set2\';
save([corpath '\' Files(index).name

'.mat'],'ltx','lty','lbx','lby','rtx','rty','rbx','rby','rot_angle');

33

text(ltx-120,lty-100,'P1','BackgroundColor',[.7 .9

.7],'HorizontalAlignment','right');
text(lbx-100,lby+100,'P2','BackgroundColor',[.7 .9

.7],'HorizontalAlignment','right');
text(rbx+100,rby+100,'P3','BackgroundColor',[.7 .9

.7],'HorizontalAlignment','left');
text(rtx+40,rty-40,'P4','BackgroundColor',[.7 .9

.7],'HorizontalAlignment','left');

% --- Executes on button press in correctrot.
function correctrot_Callback(hObject, eventdata, handles)
% hObject handle to correctrot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global J I mb

J=imrotate(I,rad2deg(atan(mb)));
axes(handles.axes1)
imshow(J)

% --- Executes on button press in save_next.
function save_next_Callback(hObject, eventdata, handles)
% hObject handle to save_next (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global index currentset Files impath imdirectory I mb J rotpath corpath

index=index+1;

currentset=Files(index).name;
impath=[imdirectory '/' Files(index).name];
I=imread(impath);
axes(handles.axes1);
imshow(I);

% rotpath='Data\rotimages\'
% imwrite(J,[rotpath '\' Files(index).name]);

set(handles.infobox, 'String',[currentset ' Loaded.....'])

set(handles.infobox, 'String',[currentset ' Saved.....'])

34

A.2 Registration-2nd step

%% Initialize
clear all
clc
%% Set Paths
current_sub_folder = 'S1_1mm\'; % Give path
impath = ['raw\' current_sub_folder];
varpath = ['Variables\' current_sub_folder];
savpath = ['Cropped_Output\' current_sub_folder];
addpath('Functions');
% distort = 0; % Do you want the output distorted?

1, else 0
% scale_factor = 1; % Scale using widths? 1, else 0
ImDir = dir(impath);

%% General functions for all images
% if distort == 1
% savpath = [savpath 'distorted\'];
% else
% if scale_factor == 1
% savpath = [savpath 'original\width\'];
% else
% savpath = [savpath 'original\height\'];
% end
% end

% if unavailable, find and save min_blk_height and blk_height params

at
% variables path

if ~exist([varpath 'min_blk_height.mat'],'file')||~exist([varpath

'blk_heights.mat'],'file')||~exist([varpath

'blk_widths.mat'],'file')||~exist([varpath

'min_blk_width.mat'],'file')
 [blk_heights,blk_widths,min_blk_height,min_blk_width] =

findMinBlockHeight(varpath);
else
 load([varpath 'min_blk_height.mat'])
 load([varpath 'blk_heights.mat'])
 load([varpath 'blk_widths.mat'])
 load([varpath 'min_blk_width.mat'])
end

%% Image Explorer
for i = 3:length(ImDir) % Correct code
 % for i = 3:3 % Comment after finding all

coordinates
 current_image = imread([impath ImDir(i).name]);

 %% Rotation of Image and tracking intersect points...
 [im_height, im_width, ~] = size(current_image);
 cx = round(im_width/2);
 cy = round(im_height/2);

 load([varpath ImDir(i).name '.mat']);

35

 rotated_image = imrotate(current_image,rot_angle,'crop'); %

Rotate the image
 inv_rot_angle = -rot_angle; %

Invert the angle to facilitate coord rot.
 old_coord = [lbx-cx,lby-cy,ltx-cx,lty-cy,rbx-cx,rby-cy,rtx-

cx,rty-cy]; % Old_Coord @origin
 rot_mat = [cosd(inv_rot_angle), sind(inv_rot_angle); -

sind(inv_rot_angle), cosd(inv_rot_angle)];

 for j = 1:2:length(old_coord)-1
 new_coord(j:j+1) = old_coord(j:j+1)*rot_mat; %

Coord(x,y)*rotation_matrix
 end
 new_coord(1:2:end) = new_coord(1:2:end)+cx; % Bias the

coordinates back to center
 new_coord(2:2:end) = new_coord(2:2:end)+cy;

 % Visualize all outputs - Warning! Comment before running

bulk!!!
 % figure
 % subplot 121
 % imshow(current_image)
 % hold on
 % plot([lbx ltx rbx rtx],[lby lty rby rty],'g*');
 % subplot 122
 % imshow(rotated_image)
 % hold on
 % plot([lbx ltx rbx rtx],[lby lty rby rty],'g*');
 % plot(new_coord(1:2:end),new_coord(2:2:end),'r*');
 % title('Old-coord - green, New-coord - red');

 %% Rescaling all images and tracking intercept points...

% if distort==1 % Scale by both height and width
% height_scale_factor = min_blk_height/blk_heights(i-2); %

Down scaling only! (height)
% width_scale_factor = min_blk_width/blk_widths(i-2); %

Down scaling only! (width)
% rescaled_image =

imresize(rotated_image,[height_scale_factor*im_height

width_scale_factor*im_width]);
% rescaled_coord = new_coord;
% rescaled_coord(2:2:end) =

height_scale_factor*rescaled_coord(2:2:end);
% rescaled_coord(1:2:end) =

width_scale_factor*rescaled_coord(1:2:end);
%
% else % Preserve original aspect ratio
% if scale_factor == 1 % Scale using widths
% width_scale_factor = min_blk_width/blk_widths(i-2); %

Down scaling only! (width)
% rescaled_image =

imresize(rotated_image,width_scale_factor);
% rescaled_coord = width_scale_factor*new_coord;
% else % Scale using heights
% height_scale_factor = min_blk_height/blk_heights(i-2);

% Down scaling only! (height)
% rescaled_image =

imresize(rotated_image,height_scale_factor);
% rescaled_coord = height_scale_factor*new_coord;

36

% end
% end

% figure;
% imshow(rescaled_image)

 height_scale_factor = min_blk_height/blk_heights(i-2); % Down scaling

only! (height)
 width_scale_factor = min_blk_width/blk_widths(i-2); % Down

scaling only! (width)

 % These two lines are for a non-distorted image!
 rescaled_image = imresize(rotated_image,height_scale_factor);
 rescaled_coord = height_scale_factor*new_coord;

 % These four lines are to resize with distortion to get higher

accuracy!

 rescaled_image =

imresize(rotated_image,[height_scale_factor*im_height

width_scale_factor*im_width]);
 rescaled_coord = new_coord;
 rescaled_coord(2:2:end) =

height_scale_factor*rescaled_coord(2:2:end);
 rescaled_coord(1:2:end) =

width_scale_factor*rescaled_coord(1:2:end);

 % Visualize all outputs - Warning! Comment before running

bulk!!!
 % figure
 % subplot 121
 % imshow(rotated_image)
 % hold on
 % plot([lbx ltx rbx rtx],[lby lty rby rty],'g*');
 % plot(new_coord(1:2:end),new_coord(2:2:end),'r*');
 % title('Old-coord - green, New-coord - red');
 % subplot 122
 % imshow(rescaled_image)
 % hold on
 % plot(new_coord(1:2:end),new_coord(2:2:end),'g*')
 %

plot(rescaled_coord(1:2:end),rescaled_coord(2:2:end),'r*');
 % title('Old-coord - green, New-coord - red');

 %% Cropping the image to the size of the block
 % old_coord = [lbx-cx,lby-cy,ltx-cx,lty-cy,rbx-cx,rby-cy,rtx-

cx,rty-cy]; % Old_Coord @origin
% cropped_image = imcrop(rescaled_image,[rescaled_coord(3)

rescaled_coord(4) abs(rescaled_coord(7)-rescaled_coord(3))

abs(rescaled_coord(4)-rescaled_coord(2))]);
% imwrite(cropped_image,[savpath ImDir(i).name]);

 cropped_image = imcrop(rescaled_image,[rescaled_coord(3)

rescaled_coord(4) abs(rescaled_coord(7)-rescaled_coord(3))

abs(rescaled_coord(4)-rescaled_coord(2))]);
 [crop_height,crop_width,~] = size(cropped_image);

37

 % Visualize all outputs - Warning! Comment before running

bulk!!!
 % [crop_height,crop_width,~] = size(cropped_image);
 %
 % figure
 % imshow(cropped_image)
 % title([num2str(crop_height) '\times' num2str(crop_width) '

= ' num2str(crop_height*crop_width)]);

 figure
 imshow(cropped_image)
 title([num2str(crop_height) '\times' num2str(crop_width) ' = '

num2str(crop_height*crop_width)]);
 J=cropped_image;
 imwrite(J,[savpath '\' ImDir(i).name]);
end

A.3 Registration Analysis

clear all
clc

%% Load data for analysis
current_sub_folder = 'S1\new\'; % Give path
varpath = ['Variables\' current_sub_folder];
% crop_path = ['Cropped_Output\' current_sub_folder];
crop_path=['Cropped_Output\' current_sub_folder];
impath = ['raw\' current_sub_folder];
if exist([varpath 'Analysis_output.mat'],'file')
 load([varpath 'Analysis_output.mat'])
else

 load([varpath 'blk_heights.mat'])
 load([varpath 'blk_widths.mat'])

 %% Raw Variation in ratio and area
 Tau_raw = blk_heights./blk_widths;
 Rho_raw = blk_heights.*blk_widths;

 %% Variation in crop with no distortion - height param
 Crop_no_distort_path = [crop_path 'original\height\'];
 CropNoDistDir = dir(Crop_no_distort_path);
 crop_orig_height = zeros(1,length(CropNoDistDir)-2); %

Definition
 crop_orig_width = crop_orig_height;
 for i = 3:length(CropNoDistDir)
 [crop_orig_height(i-2),crop_orig_width(i-2),~] =

size(imread([Crop_no_distort_path CropNoDistDir(i).name]));
 end
 Tau_rch = crop_orig_height./crop_orig_width;
 Rho_rch = crop_orig_height.*crop_orig_width;

 %% Variation in crop with no distortion (Tau_rc) - width param
 Crop_no_distort_path = [crop_path 'original\width\'];

38

 CropNoDistDir = dir(Crop_no_distort_path);
 crop_orig_height = zeros(1,length(CropNoDistDir)-2); %

Definition
 crop_orig_width = crop_orig_height;
 for i = 3:length(CropNoDistDir)
 [crop_orig_height(i-2),crop_orig_width(i-2),~] =

size(imread([Crop_no_distort_path CropNoDistDir(i).name]));
 end
 Tau_rcw = crop_orig_height./crop_orig_width;
 Rho_rcw = crop_orig_height.*crop_orig_width;

 %% Variation in after crop - with distorted
 Crop_distort_path = [crop_path 'distorted\'];
 CropDistDir = dir(Crop_no_distort_path);
 crop_dist_height = zeros(1,length(CropNoDistDir)-2); %

Definition
 crop_dist_width = crop_orig_height;
 for i = 3:length(CropNoDistDir)
 [crop_dist_height(i-2),crop_dist_width(i-2),~] =

size(imread([Crop_distort_path CropDistDir(i).name]));
 end
 Tau_dc = crop_dist_height./crop_dist_width;
 Rho_dc = crop_dist_height.*crop_dist_width;

end

%% View ratio outputs
figure
set(gcf, 'Position', get(0,'Screensize')); % Maximize figure.
plot(Tau_raw,'r^')
hold on
plot(Tau_rch,'b.')
plot(Tau_rcw,'m.')

plot(Tau_dc,'ko')
grid minor
title('Measured block height-width ratio comparison');
xlabel('Image Number - subfolder-S3');
ylabel('Variants of \tau = Height:Width');
legend('\tau_{raw}','\tau_{rch}','\tau_{rcw}','\tau_{dc}','Location',

'northwest')

%% View area outputs
figure
set(gcf, 'Position', get(0,'Screensize')); % Maximize figure.
plot(Rho_raw,'r^')
hold on
plot(Rho_rch,'b.')
plot(Rho_rcw,'m.')
plot(Rho_dc,'ko')
grid minor
title('Measured block area comparison');
xlabel('Image Number - subfolder-S3');
ylabel('Variants of \rho = Height\times Width');
legend('\rho_{raw}','\rho_{rch}','\rho_{rcw}','\rho_{dc}','Location',

'southeast')

39

save([varpath 'Analysis_output.mat'],

'Tau_raw','Tau_rch','Tau_rcw','Tau_dc','Rho_raw','Rho_rch','Rho_rcw',

'Rho_dc');

%% Showing the difference in the form of images
% Finding the worst affected image
[~,max_diff_idx] = max(abs(Tau_raw-Tau_dc));
Im_dir = dir(im_path);
figure
set(gcf, 'Position', get(0,'Screensize')); % Maximize figure.
subplot 221
imshow([im_path Im_dir(max_diff_idx-3).name]); % Show the raw image
title('Original Image');
subplot 222
imshow([crop_path 'distorted\' Im_dir(max_diff_idx-3).name]); % Show

the distorted crop
title('Distorted');
subplot 223
imshow([crop_path 'original\height\' Im_dir(max_diff_idx-3).name]); %

Show the height scaled crop
title('Non-Distorted Height Scaled');
subplot 224
imshow([crop_path 'original\width\' Im_dir(max_diff_idx-3).name]); %

Show the widht scaled crop
title('Non-Distorted Width Scaled');

A.4 Segmentation

function varargout = MAIN(varargin)
% MAIN MATLAB code for MAIN.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in MAIN.M with the given input

arguments.
%
% MAIN('Property','Value',...) creates a new MAIN or raises

the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before MAIN_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to MAIN_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

40

% Edit the above text to modify the response to help MAIN

% Last Modified by GUIDE v2.5 11-Mar-2016 10:56:13

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @MAIN_OpeningFcn, ...
 'gui_OutputFcn', @MAIN_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before MAIN is made visible.
function MAIN_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MAIN (see VARARGIN)

% Choose default command line output for MAIN
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

addpath('Functions')
% UIWAIT makes MAIN wait for user response (see UIRESUME)
% uiwait(handles.figure1);
%
global impath I
global currentSet Files Imdirectory index
index = 1;
Imdirectory='Data\S3\';
Files = dir([Imdirectory '/*.jpg']);
currentSet = Files(index).name;
impath = [Imdirectory '/' Files(index).name];
I = imread(impath);

% set(handles.infoBox,'String',['Image ' impath ' loaded. Select

Left and Right masks...'])

%%

% global fname
% % fname = 'P3290177';

41

% I = imread(['Data\S3\' fname '.jpg']);

% axes(handles.axes1);
% imshow(I);

% I = rgb2gray(imread('P3290224.jpg'));
% imshow(I)
% str = 'Click to select initial contour location. Double-click to

confirm and proceed.';
% title(str,'Color','b','FontSize',12);
% disp(sprintf('\nNote: Click close to object boundaries for more

accurate result.'))
% mask = roipoly;
%
% figure, imshow(mask)
% title('Initial MASK');
% maxIterations = 200;
% bw = activecontour(I, mask, maxIterations, 'Chan-Vese');
%
% % Display segmented image
% figure, imshow(bw)
% title('Segmented Image');
%
global I impath
axes(handles.axes1);
imshow(I);

global radiusR
global radiusL
radiusR = 30;
radiusL = 30;
global xR
global yR
global xL
global yL ix iy

[ix, iy, ~]=size(I);

xL = 100;
yL = 100;
xR = 200;
yR = 200;

global hcirc
if radiusL > 0
 hcirc = viscircles([xL yL],radiusL,'EdgeColor','m');
end
global hcircR
if radiusR > 0
 hcircR = viscircles([xR yR],radiusR,'EdgeColor','r');
end

% --- Outputs from this function are returned to the command line.
function varargout = MAIN_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

42

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on mouse press over figure background, over a

disabled or
% --- inactive control, or over an axes background.
function figure1_WindowButtonDownFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global xL xR yL yR radiusR radiusL
global hcirc
global hcircR
global flag

if strcmp(get(handles.figure1,'selectionType') , 'normal')
 flag = 1; % Left click = 1
 axes(handles.axes1);
 [xL,yL] = ginput(1);

 if radiusL > 0
 delete(hcirc)
 end
 if radiusL > 0
 hcirc = viscircles([xL yL],radiusL,'EdgeColor','m');
 end
end
if strcmp(get(handles.figure1,'selectionType') , 'alt')
 flag = 0; % Right click = 0
 axes(handles.axes1);
 [xR,yR] = ginput(1);
 if radiusR > 0
 delete(hcircR)
 end
 if radiusR > 0
 hcircR = viscircles([xR yR],radiusR,'EdgeColor','r');
 end
end

% --- Executes on scroll wheel click while the figure is in focus.
function figure1_WindowScrollWheelFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata structure with the following fields (see FIGURE)
% VerticalScrollCount: signed integer indicating direction and

number of clicks
% VerticalScrollAmount: number of lines scrolled for each click
% handles structure with handles and user data (see GUIDATA)
set(gcf, 'WindowScrollWheelFcn', @figScroll);

function figScroll(src,evnt)
direction = evnt.VerticalScrollCount;

43

global radiusR radiusL
global hcirc
global xL xR
global yL yR
global hcircR
global flag

if flag
 if radiusL - 5*direction < 0
 radiusL = 5;
 else
 radiusL = radiusL - 5*direction;
 end
 if radiusL > 0
 delete(hcirc)
 end

 if radiusL > 0
 hcirc = viscircles([xL yL],radiusL,'EdgeColor','m');
 end

else
 if radiusR - 5*direction < 0
 radiusR = 5;
 else
 radiusR = radiusR - 5*direction;
 end
 if radiusR > 0
 delete(hcircR)
 end

 if radiusR > 0
 hcircR = viscircles([xR yR],radiusR,'EdgeColor','r');
 end
end

% --- Executes on button press in addmask.
function addmask_Callback(hObject, eventdata, handles)
% hObject handle to addmask (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global xL yL xR yR ix iy
global I

global radiusL radiusR currentSet meshL meshR

meshL = mesh_grid(xL, yL, ix, iy, radiusL);
meshR = mesh_grid(xR, yR, ix, iy, radiusR);
% axes(handles.axes1);
% I = rgb2gray(imread('P3290262.jpg'));
% imshow(I)
% BW = roipoly;
%
%
% maxIterations = 200;
% seg = activecontour(I, mask, maxIterations, 'Chan-Vese');

44

%
% % Display segmented image
% figure, imshow(seg)
% title('Segmented Image');

save(['Masks\' currentSet(1:end-4) '.mat'],'meshL','meshR')
set(handles.infoBox,'String',['Mask for ' currentSet ' saved...'])

% --- Executes on button press in optimize.
function optimize_Callback(hObject, eventdata, handles)
% hObject handle to optimize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
addpath('Functions\Optimizer');
global I meshL meshR hOvm
% optiMaskL =

deploy_snake(rgb2gray(I),meshL,maxIterations,algorithm,smoothness)

;
% optiMaskR =

deploy_snake(rgb2gray(I),meshR,maxIterations,algorithm,smoothness)

;
size(I)
size(meshL)
algorithm = get(handles.chanvase,'Value');
iterations = str2double(get(handles.iterations,'String'));
smoothness = 2*get(handles.smooth,'Value');

optiMaskL =

deploy_snake(rgb2gray(I),meshL,iterations,algorithm,smoothness);
optiMaskR =

deploy_snake(rgb2gray(I),meshR,iterations,algorithm,smoothness);
axes(handles.axes1)
if exist('hOvm')
 delete(hOvm)
end
hOvm = alphamask(optiMaskL|optiMaskR);

 h = msgbox({'Operation' 'Completed'});

% --- Executes on button press in next.
function next_Callback(hObject, eventdata, handles)
% hObject handle to next (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Files Imdirectory currentSet index meshL meshR I
index = index+1;
currentSet = Files(index).name;
impath = [Imdirectory '/' Files(index).name];
I = imread(impath);
axes(handles.axes1);
imshow(I);

45

global radiusR
global radiusL
radiusR = 30;
radiusL = 30;
global xR
global yR
global xL
global yL ix iy

[ix, iy, ~]=size(I);

xL = 100;
yL = 100;
xR = 200;
yR = 200;

global hcirc
if radiusL > 0
 hcirc = viscircles([xL yL],radiusL,'EdgeColor','m');
end
global hcircR
if radiusR > 0
 hcircR = viscircles([xR yR],radiusR,'EdgeColor','r');
end

% save(['OptiMasks\' currentSet(1:end-4) '.mat'],'meshL','meshR')
% save(['OptiMasks\' currentSet(1:end-4) '.raw'],'meshL','meshR')
save(['OptiMasks\' currentSet(1:end-4) '.mat'],'meshL','meshR')

set(handles.infoBox,'String',['Mask for ' currentSet ' saved...'])

% --- Executes during object creation, after setting all properties.
function iterations_CreateFcn(hObject, eventdata, handles)
% hObject handle to iterations (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

function iterations_Callback(hObject, eventdata, handles)
% hObject handle to iterations (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of iterations as

text
% str2double(get(hObject,'String')) returns contents of

iterations as a double

% --- Executes on slider movement.

46

function smooth_Callback(hObject, eventdata, handles)
% hObject handle to smooth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine

range of slider

% --- Executes during object creation, after setting all properties.
function smooth_CreateFcn(hObject, eventdata, handles)
% hObject handle to smooth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

A.5 Preparation for modelling

function align_urethra
fname='S7'; % call images from subset:S7
A=dir(['prostate_mask\' fname]); % list the folder contains:

'prostate mask'
mkdir('binMatrices'); % make a new folder: 'binMatrices'
n=length(A); % run all the images inside

variable:'A'
count=1; % 1st count is taken as 1

%convert to 1 layer
for i=3:n
 load(['prostate_mask\' fname '\' A(i).name]); % load the:

'prostate mask'
 maskedRgbImage=(maskedRgbImage(:,:,1)>0); % convert

to 1D binary
 save(['binMatrices\' A(i).name],'maskedRgbImage'); % save it

inside: 'binMatrices'
end

% Combine 3 layers
mkdir('CombinedMatrices') % make

a new folder: 'combinedMatrices'
for i=3:n
 load(['binMatrices\' A(i).name]); % load

the: 'binMatrices'
 load(['ducts_n_urethra\' fname '\' A(i).name]); % load

the: 'ducts_n_urethra'
 FinalMesh=meshL + meshM + meshR; % Final

mesh comprise of meshL(~Left Duct),meshM(~Urethra)& meshR(~Right

Duct)

47

 maskedRgbImage=maskedRgbImage-FinalMesh; %

Determine the: maskedRgbImage(~Prostate mask)
 save(['CombinedMatrices\' A(i).name],'maskedRgbImage'); % save

maskedRgbImage in the: 'combinedMatrices'
end

% Overlap Urethra
mkdir('overlappedMatrices') % make

a new folder:'overlappedMatrices'

% Take out the reference
load(['ducts_n_urethra\' fname '\' A(3).name]); % load:

'ducts_n_urethra'
ure_center=bwmorph(meshM,'shrink','inf'); % shrink

objects to points for meshM (~Urethra)
[urefy,urefx]=find(ure_center); % find

the center(x,y coordinates) of the 1st image of the

Urethra(REFERENCE)

for i=3:n
 load(['combinedMatrices\' A(i).name]); % load

the: 'combinedMatrices'
 load(['ducts_n_urethra\' fname '\' A(i).name]); % load

: 'ducts_n_urethra'
 ure_center=bwmorph(meshM,'shrink','inf'); % shrink

objects to points for meshM (~Urethra)for the rest of the images
[uy,ux]=find(ure_center); % find

the center(x,y) of the urethra for rest of the images within the

same set(set:S7)
dy=urefy-uy; % find

translated y distance (dy)
dx=urefx-ux; % find

translated x distance (dx)
FinalMesh=meshL + meshM + meshR; % final

mesh consist of meshL(~Left Duct),meshM(~Urethra)& meshR(~Right

Duct)
 maskedRgbImage=maskedRgbImage-FinalMesh; % find

the maskedRgbImage (~prostate mask)

maskedRgbImage=imtranslate(maskedRgbImage,[dy,dx],'fillvalues',255

,'outputview','full'); % translated all the objects by the value of

[dy,dx]
save(['overlappedMatrices\' A(i).name],'maskedRgbImage'); % save

it as : 'overlappedMatrices'
end

% % testing purposes
% imshow(maskedRgbImage)
% hold on
% plot(urefx,urefy,'rx');
% pause(5)
%
%
% imshow(maskedRgbImage)
%
% figure;
% plot(ux,uy,'gx');
% hold off

48

%
% stackedMat(:,:,i-2)=maskedRgbImage(urefy-682:urefy+350,urefx-

443:urefx+550);
% end

% find the largest dim
A=dir('combinedMatrices');
a=0;
b=0;
n=length(A)-2; % nnumber of matrices

in the stack
for i=3:n+2
 load(['combinedMatrices\' (A(i).name)]); % load the:

'combinedMatrices'
 [p,q]=size(maskedRgbImage); % find the rows and

columns (size) of the maskedRgbImage
 if p>a % Find the largest

height
 a=p;
 end
 if q>b % find the largest

width
 b=q;
 end
end

mkdir('PaddedMatrices') % make a new folder:

'PaddedMatrices'
for i=3:n+2
 load(['combinedMatrices\' (A(i).name)]); % load:

'combinedMatrices'
 [p,q]=size(maskedRgbImage); % find the size of

the maskedRgbImage
 maskedRgbImage=padarray(maskedRgbImage,[round((a-

p)/2)],[round((b-q)/2)]); % perform padding to the largest

dimension
 save(['PaddedMatrices\' A(i).name],'maskedRgbImage');

% save maskedRgbImage as: 'PaddedMatrices'
end

% Perform Cropping
mkdir('croppedMatrices') % make

a new folder: 'croppedMatrices'

for i = 3:n+2
 load(['paddedMatrices\' (A(i).name)]); % load:

'paddedMatrices'
 maskedRgbImage = imcrop(maskedRgbImage,[0 0 b a]); % Not

happy with 0 0? (crop the image). now a and b contains the largest

dimensions
 save(['croppedMatrices\' A(i).name],'maskedRgbImage'); % save

the maskedRgbImage as: 'croppedMatrices'
end

% % Perform Stacking
stackedMat = zeros(a,b,n); % create a matrix

of all zeros

49

for i = 3:n+2
 load(['croppedMatrices\' (A(i).name)]); % load:

'croppedMatrices'
 stackedMat(:,:,i-2) = maskedRgbImage; % stack the matrices
end

stackedMat(stackedMat == 0) = -100;
stackedMat(stackedMat == 1) = 100;

save('stackedMatrix.mat','stackedMat'); % save the matrices

as: 'stackedMatrix.mat'
end

% % Employed overlapped urethras
% function boundaryurethra
% fname='S7';
% A=dir(['prostate_mask\' fname]);
% n=length(A);
% points=[];
%
% for i=3:n
% load(['overlappedMatrices\' A(i).name]);
% load(['ducts_n_urethra\' fname '\' A(i).name]);
% [u_shell]=makeshell(meshM);
% u_p=sorter(u_shell,i);
% points=[points;u_p];
% end
%
% assignin('base','points',points);
% X=points(:,1);
% Y=points(:,2);
% Z=points(:,3);
% save(['overlappedMatrices\' A(i).name],'maskedRgbImage');
% end
%
%
% % Obtain Urethra points
%
% function obtainurethrapoints
%
% fname='S7';
% A=dir(['prostate_mask\' fname]);
% n=length(A);
% points=[];
%
% for i=3:n
% load(['ducts_n_urethra\' fname '\' A(i).name]);
% % load(['prostate_mask\' fname '\' A(i).name]);
% load(['PaddedMatrices\' (A(i).name)]);
% [u_shell]=makeshell(meshM);
% u_p=sorter(u_shell,i);
% points=[points;u_p];
% end
%
% assignin('base','points',points);
% X=points(:,1);
% Y=points(:,2);
% Z=points(:,3);

50

% vtkwrite('UrethraOverlapOnly.vtk','polydata','lines',X, Y, Z)
% end
%
%
%
%
% % % % Make the shell
% function varargout=makeshell(varargin)
% for i=1:nargin
% maskedRgbImage=maskedRgbImage(:,:,1)>0;
% bw_im=maskedRgbImage;
% bw_im=varargin{i};
% bw_im=bwmorph(bw_im,'remove');
% varargout{i}=bw_im;
% end
% end
%
%
% % Sort the points
% function points=sorter(bw_im,i)
% bw_im=bwmorph(meshM,'remove');
% [idy,idx]=find(bw_im);
% refx=idx(1);
% refy=idy(1);
% sortedx=refx;
% sortedy=refy;
% idx(1)=[];
% idy(1)=[];
%
% while~isempty(idx)
% Pointidx=findEucDist(refx,refy,idx,idy);
% refx=idx(Pointidx);
% refy=idy(Pointidx);

% sortedx=[sortedx refx];
% sortedy=[sortedy refy];
% idx(Pointidx)=[];
% idy(Pointidx)=[];
% end
%
% sortedx = 0.0292*sortedx;
% sortedy = 0.0292*sortedy;
% sortedz = 2*(i-2)*ones(1,length(sortedx));
% points = [points; sortedx' sortedy' sortedz'];
% end
%

1. Stacking
% fname='S7'
A = dir(['prostate_mask\S7\']);
load(['prostate_mask\' (A(3).name)]); % temp loaded
mkdir('binMatrices')
for i = 3:length(A)
 load(['prostate_mask\' (A(i).name)]);
 maskedRgbImage = (maskedRgbImage(:,:,1)>0);
 save(['binMatrices\' A(i).name],'maskedRgbImage');
end

% Combine the three layers now...

51

mkdir('combinedMatrices')
for i = 3:length(A)
 load(['binMatrices\' (A(i).name)]);
 load(['ducts_n_urethra\' (A(i).name)]);
% maskedRgbImage = bwmorph(maskedRgbImage,'remove');
 FinalMesh = meshL + meshM + meshR;
% maskedRgbImage = maskedRgbImage + FinalMesh;
 maskedRgbImage = maskedRgbImage -FinalMesh;

 save(['combinedMatrices\' A(i).name],'maskedRgbImage');
end

% overlap urethras

mkdir('overlappedMatrices')

% Take out the reference
load(['ducts_n_urethra\' (A(3).name)]);
ure_center = bwmorph(meshM,'shrink','inf');
[urefy, urefx] = find(ure_center);

for i = 4:length(A)
 load(['combinedMatrices\' (A(i).name)]);
 load(['ducts_n_urethra\' (A(i).name)]);
 ure_center = bwmorph(meshM,'shrink','inf');
 [uy, ux] = find(ure_center);
 FinalMesh = meshL + meshM + meshR;
 maskedRgbImage = maskedRgbImage -FinalMesh;
 maskedRgbImage = imtranslate(maskedRgbImage,[urefx-ux,urefy-

uy],'FillValues',255);

 save(['overlappedMatrices\' A(i).name],'maskedRgbImage');
end

% find the largest dim

A = dir('combinedMatrices');
a = 0;
b = 0;
n = length(A)-2; % number of matrices in the stack

for i = 3:n+2
 load(['combinedMatrices\' (A(i).name)]);
 [p,q] = size(maskedRgbImage);
 if p > a
 a = p;
 end
 if q > b
 b = q;
 end
% now a and b contains the smallest dimensions
end

% Perform Padding
mkdir('PaddedMatrices')

for i = 3:n+2

52

 load(['combinedMatrices\' (A(i).name)]);
 [p,q] = size(maskedRgbImage);
 maskedRgbImage = padarray(maskedRgbImage,[round((a-p)/2),

round((b-q)/2)]); % Not happy with 0 0?
 save(['paddedMatrices\' A(i).name],'maskedRgbImage');
% now a and b contains the largest dimensions
end

% Find the smallest dimensions
A = dir('overlappedMatrices');
a = 10000;
b = 10000;
n = length(A)-2; % number of matrices in the stack

for i = 3:n+2
 load(['overlappedMatrices\' (A(i).name)]);
 [p,q] = size(maskedRgbImage);
 if p < a
 a = p;
 end
 if q < b
 b = q;
 end
% now a and b contains the smallest dimensions
end

% Perform Cropping
mkdir('croppedMatrices')

for i = 3:n+2
 load(['paddedMatrices\' (A(i).name)]);
 maskedRgbImage = imcrop(maskedRgbImage,[0 0 b a]); % Not

happy with 0 0?
 save(['croppedMatrices\' A(i).name],'maskedRgbImage');
% now a and b contains the largest dimensions
end

% % Perform Stacking
stackedMat = zeros(a,b,n);
for i = 3:n+2
 load(['croppedMatrices\' (A(i).name)]);
 stackedMat(:,:,i-2) = maskedRgbImage;
end

stackedMat(stackedMat == 0) = -100;
stackedMat(stackedMat == 1) = 100;

save('stackedMatrix.mat','stackedMat');

%% write to vtk file
WriteToVTK(stackedMat,'stacked.vtk')

