

MATHEMATICAL MODELLING OF HIDDEN LAYER

ARCHITECTURE IN ARTIFICIAL NEURAL NETWORKS

Nimalka Mihirini Wagarachchi

(118024B)

Degree of Doctor of Philosophy

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

 August 2018

MATHEMATICAL MODELLING OF HIDDEN LAYER

ARCHITECTURE IN ARTIFICIAL NEURAL NETWORKS

Nimalka Mihirini Wagarachchi

(118024B)

Thesis submitted in partial fulfillment of the requirements for the degree Doctor of

Philosophy

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

August 2018

i

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief, it does not contain any material previously published or written by another

person except where the acknowledgement made is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles

or books)

Signature: Date:

The above candidate has carried out the research for the PhD thesis under my

supervision.

Signature of the supervisor: Date:

ii

Dedicated to

My beloved Father and Mother

iii

Acknowledgements

Many people have helped their best to successfully completion of this research. I

acknowledge all of them for their valuable thoughts and constant encouragement

given me to make my project a reality.

First and foremost, I acknowledge my supervisor Senior Professor Asoka

Karunananda for accepting me as his research student and giving excellent support

and advices. Prof. Karunananda is a great mentor who guided whilst giving me all

the freedom and encouragement to accompany with my own ideas. Without his

patient listening and creative thoughts this work would not have been possible at all.

Very special thank goes to Prof. Sarath Pieris and Dr. Uditha Rathnayake for their

invaluable comments and guidance as my examiners of bi-annual review panels.

I acknowledge all the office bearers and the staff of the HETC project for granting

me financial assistance by awarding the HETC scholarship to smooth functioning of

this research. Also express my sincere thanks to the staff of OTS office, university

of Ruhuna for their wholehearted support.

I graciously acknowledge the support of Senior Prof. Gamini Senanayake, The Vice

Chancellor, Senior Prof. Susirith Mendis, former Vice Chancellor, Dr. Nayana

Alagiyawanna, former Dean/ Faculty of Engineering and the present Deputy Vice

Chancellor University of Ruhuna for selecting me as an HETC candidate of the

University of Ruhuna and giving their utmost support and guidance throughout.

I wish to extend my sincere thanks for the support I received from all the members

of the administration office and members of the Faculty of Information

Technologies, University of Moratuwa. Especially I thank Ms. Dilini Kulawansa,

Dr. Subha Fernando and Dr. Thushari Silva for their important roles.

iv

Also, I thank all the academic and non-academic staff of Faculty of Engineering,

University of Ruhuna for their kind-hearted help to fulfill my research work.

My graciously acknowledgment to the friendly assistance given by Dr. M. K.

Abeyrathne, Dr. Subashi, Ms. Malkanthi, Mr. Samantha and all my colleagues of the

Department of Interdisciplinary Studies, Faculty of Engineering, University of

Ruhuna.

Very special and heartfelt thanks for Budditha and Chinthanie for their gracious

associations throughout the last couple of years.

I acknowledge the sacrificial dedication of my family members, especially my

husband Pramud and our daughter Dinithi Navodya for their encouragement and

corporate by managing all the works while I was busy with my works on this

research.

v

Abstract

The performance of an Artificial Neural Network (ANN) strongly depends on its hidden

layer architecture. The generated solution by an ANN does not guarantee that it has always

been devised with the simplest neural network architecture suitable for modeling the

particular problem. This results in computational complexity of training of an ANN,

deployment, and usage of the trained network. Therefore, modeling the hidden layer

architecture of an ANN remains as a research challenge. This thesis presents a theoretically-

based approach to prune hidden layers of trained artificial neural networks, ensuring better

or the same performance of a simpler network as compared with the original network.

The method described in the thesis is inspired by the finding from neuroscience that the

human brain has a neural network with nearly 100 billion neurons, yet our activities are

performed by a much simpler neural network with a much lesser number of neurons.

Furthermore, in biological neural networks, the neurons which do not significantly

contribute to the performance of the network will naturally be disregarded. According to

neuroplasticity, biological neural networks can also solicit activations of neurons in the

proximity of the active neural network to improve the performance of the network. On the

same token, it is hypothesized that for a given complex-trained ANN, we can discover an

ANN, which is much more simplified than the original given architecture.

This research has discovered a theory to reduce certain number of hidden layers and to

eliminate disregarding neurons from the remaining hidden layers of a given ANN

architecture. The procedure begins with a complex neural network architecture trained with

backpropagation algorithm and reach to the optimum solution by two phases. First, the

number of hidden layers is determined by using a peak search algorithm discovered by this

research. The newly discovered simpler network with lesser number of hidden layers and

highest generalization power considered for pruning of its hidden neurons. The pruning of

neurons in the hidden layers has been theorized by identifying the neurons, which give least

contribution to the network performances. These neurons are identified by detecting the

correlations regarding minimization of error in training. Experiments have shown that the

simplified network architecture generated by this approach exhibits same or better

performance as compared with the original large network architecture. Generally, it reduces

more than 80% of neurons while increasing the generalization by about 30%. As such, the

proposed approach can be used to discover simple network architecture relevant to a given

complex architecture of an ANN solution. Due to its architectural simplicity, the new

architecture has been computationally efficient in training, usage and further training.

Keywords: Artificial neural networks, backpropagation algorithm, delta value, hidden layer

architecture, neuroplasticity

vi

CONTENTS

CHAPTER 1 – INTRODUCTION 1

1.1 Prolegomena 1

1.2 Aims and Objectives 1

1.3 Background and Motivation 2

1.4 The Problem in Brief 3

1.5 Current Approaches to Modelling Hidden Layer Architecture 4

1.6 The Proposed Solution 5

1.7 Resource requirements 7

1.8 Organization 7

1.9 Summary 8

CHAPTER 2 – FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS

 9

2.1 Introduction 9

2.2 Preamble to the Artificial Neural Networks 9

2.3 The History 12

2.4 Structure of Artificial Neural Networks 13

2.4.1 Feedforward networks 15

2.4.2 Recurrent networks 18

2.5 Activation Functions 19

2.5.1 Hard limit activation functions 19

2.5.2 Linear function 20

2.5.3 Sigmoid functions 21

2.6 Neural Network Learning 22

2.6.1 Supervised learning 22

2.6.2 Reinforcement learning 22

2.6.3 Unsupervised learning 23

2.7 Learning Algorithms 24

2.7.1 Hebbian learning 24

2.7.2 Error correction learning rules 26

vii

2.7.2.1 Perceptron Learning Rule 26

2.7.2.2 Backpropagation Learning 28

2.7.3 Boltzmann learning 33

2.7.4 Competitive learning 34

2.8 Summary 34

CHAPTER 3 – CHALLENGES IN DESIGNING OF NEURAL NETWORKS

 36

3.1 Introduction 36

3.2 The Problem of Designing the Optimal Architecture in ANN 36

3.3 Pruning Algorithms 37

3.3.1 Sensitivity calculation method 38

3.3.2 Penalty methods 45

3.4 Constructive methods 49

3.4.1 Cascade correlation algorithm 49

3.4.2 Dynamic node creation algorithm 51

3.4.3 Tiling algorithm 51

3.4.4 Tower algorithm 52

3.4.5 Pyramid algorithm 53

3.5 Evolutionary Methods 54

3.6 Summary 55

CHAPTER 4 – A THEORETICAL BASIS FOR MODELING HIDDEN

LAYERS 56

4.1 Introduction 56

4.2 The History of the Neuroplasticity 56

4.3 Types of Neuroplasticity 58

4.3.1 Activity - dependent plasticity 58

4.3.2 Competitive plasticity 59

4.3.3 Positive and negative plasticity 60

4.4 Structure of the Biological Neuron 61

4.5 Neuronal Structure of the Human Brain 62

4.6 The Anatomy of the Human Brain 63

4.7 Functions of the Neocortex 66

viii

4.8 Classification of Effect of Neuroplasticity 69

4.8.1 Structural changes in Human brain 69

4.8.1.1 Neurogenesis 70

4.8.1.2 Neural Migration 71

4.8.1.3 Neural Cell Death 71

4.8.2 Synaptic plasticity 72

4.8.2.1 Synaptogenesis and Synaptic Pruning 72

4.8.3 Functional neuroplasticity 73

4.9 Positive and Negative Outcomes of Neuroplasticity 74

4.9.1 Positive outcomes of neuroplasticity 74

4.9.2 Negative outcomes of neuroplasticity 74

4.10 Artificial Neural Networks and Human Brain 76

4.11 Summary 78

CHAPTER 5 – A NOVEL APPROACH TO MODELLING HIDDEN LAYERS

 79

5.1 Introduction 79

5.2 The Hypothesis 79

5.3 Inputs 80

5.4 Outputs 80

5.5 Process of the New Method 81

5.5.1 The Peak Search Algorithm 81

5.5.2 Performance of the algorithm 90

5.5.3 Upper limit for the hidden Layers 91

5.5.4 Determining number of hidden neurons 94

5.5.5 Merge the similar neurons 97

5.5.6 The new algorithm 98

5.6 Summary 100

CHAPTER 6 – EXPERIMENTAL DESIGN AND RESULTS 101

6.1 Introduction 101

6.2 Experimental Design 101

6.2.1 Experimental setup 101

6.2.2 Test cases 104

6.2.2.1 Breast Cancer Wisconsin data set (Cancer) 104

6.2.2.2 Credit card approval data set (Card) 104

6.2.2.3 Pima Indians diabetes data set (Diabetes) 105

ix

6.2.2.4 Solar flare data set (Flare) 105

6.2.2.5 User knowledge modeling data set (Knowledge) 105

6.2.3 Testing strategies 105

6.3 Experimental Results 106

6.3.1 The variation of network performance with the number of layers. 106

6.3.2 Determining the number of hidden layers 113

6.3.3 Correlation between the sum of Delta values and the output error 121

6.3.4 Correlation between the sum of Delta values and the output error 121

6.3.5 Removing neurons 126

6.4 Comparison with Existing Method 132

6.5 Summary 134

CHAPTER 7 – USING PSDV FOR DEEP NEURAL NETWORKS 135

7.1 Introduction 135

7.2 Preamble to Deep Neural Networks 135

7.2.1 Convolutional Neural Networks 137

7.2.2 Deep Belief Neural Networks 139

7.3 Using PSDV for Deep Neural Networks 140

7.3.1 Applying PSDV to Convolutional Neural Networks 140

7.3.2 Applying PSDV to Deep Belief Neural Networks 141

7.4 Summary 142

CHAPTER 8 – CONCLUSION AND FUTURE WORKS 143

8.1 Introduction 143

8.2 Modelling Hidden Layer Architecture in ANN 143

8.3 Objectives-wise Achievement 144

8.4 Limitations and Future Directions 146

8.5 Summary 147

REFERENCES 148

APPENDIX A – DATA SETS 160

APPENDIX B – DETERMINING THE NUMBER OF HIDDEN LAYERS 165

x

APPENDIX C – SELECTED CODES 177

APPENDIX D – PUBLICATIONS 182

xi

List of Figures
Figure 1.1: Diagram representation of central nervous system 3

Figure 1.2: The structure of the human brain .. 7
Figure 2.1: Model of ANN proposed by McCulloh and Pitt 12
Figure 2.2: Single layer feedforward network ... 16
Figure 2.3: Multilayer feed forward network .. 17
Figure 2.4: Radial basis function network ... 18

Figure 2.5: Recurrent network ... 18
Figure 2.6: Classification of Neural Networks by architecture 19
Figure 2.7: Hard limit function .. 20
Figure 2.8: Linear function .. 20
Figure 2.9: Sigmoid functions ... 21

Figure 2.10: Block diagram for supervised learning ... 23
Figure 2.11: Block diagram for unsupervised learning ... 24

Figure 2.12: Perceptron Algorithm .. 27
Figure 2.13: The perceptron learning rule ... 28
Figure 2.14: Backpropagation learning algorithm ... 32
Figure 2.15: Boltzmann Machine .. 34

Figure 3.1: Adaptive linear neuron .. 44
Figure 3.2: Structure of the cascade algorithm .. 50

Figure 3.3: Tilling Algorithm .. 52
Figure 3.4: Tower Algorithm .. 52
Figure 3.5: Pyramid Algorithm ... 54

Figure 4.1: Structure of a biological nerve cell ... 57
Figure 4.2: Structure of a neurons and a synapse .. 62

Figure 4.3: Structure of the brain .. 64
Figure 4.4: The structural organization of levels in the brain 65

Figure 4.5: The hierarchy of the brain ... 66
Figure 4.6: The layered structure of the neocortex .. 69

Figure 4.7: Hippocampus area of the brain ... 70
Figure 4.8: Changes of synapses .. 73
Figure 4.9: Neurons of autistic (left) and normal brains (right) 76

Figure 5.1: Change of the generalization with the number of hidden layers 81
Figure 5.2: Change of generalization with hidden layers .. 82

Figure 5.3: Graphs for ... 84

Figure 5.4: Graphs for .. 84

Figure 5.5: Graphs when is the maximum ... 85

Figure 5.6: Graphs when is the maximum ... 86

Figure 5.7: Graphs when is the maximum ... 86
Figure 5.8: Flow diagram for peak search algorithm .. 88

Figure 5.9: The peak search algorithm .. 89
Figure 5.10: Binary comparison tree ... 90
Figure 5.11: Sigmoid functions ... 92

Figure 5.12: Sketch of the derivatives of sigmoid functions 92

Figure 5.13: for different initial values ... 94
Figure 5.14: Illustration of removing unimportant neurons 99
Figure 6.1: Changing performance with hidden layers in Cancer I problem 108

xii

Figure 6.2: Generalization comparison of Cancer problems 108

Figure 6.3: Generalization comparison of Card problems 110
Figure 6.4: Generalization comparison of Diabetes problems 110
Figure 6.5: Generalization comparison of Flare problems 111

Figure 6.6: No. of epochs take to train Knowledge I Problem 112
Figure 6.7: Generalization comparison of Knowledge problems 113
Figure 6.8: Determining number of hidden layers in Cancer I 117
Figure 6.9: Determining number of hidden layers in Flare I problem 119
Figure 6.10: Correlations of Cancer I problem ... 122

Figure 6.11: Correlations of Card I problem .. 123
Figure 6.12: Correlation of the Banknote problem ... 124
Figure 6.13: Summary of Peak search algorithm .. 129
Figure 6.14: Reduction of neurons from the initial network configuration 131
Figure 6.15: Increase of the generalization comparing with the initial network 132

Figure 6.16: Comparison of PSDV with the other existing methods 133
Figure 7.1: Structure of a convolutional neural network ... 138

xiii

List of Tables

Table 2.1: Comparison of Von Neumann computer and the human brain 11
Table 6.1: Information of Data Sets .. 103
Table 6.2: Changing performance with hidden layers in Cancer problems 107
Table 6.3: Changing performance with hidden layers in Card problems 109

Table 6.4: Changing performance with hidden layers in Diabetes problems 109
Table 6.5: Changing performance with hidden layers in Flare problems 111
Table 6.6: Details of Initial networks .. 116
Table 6.7: Distribution of hidden neurons in Flare I data set 118
Table 6.8: Details of New architecture obtained by the Peak Search Algorithms .. 119

Table 6.9: Correlations of the Cancer I data set .. 121
Table 6.10: Correlations of the Card I data set .. 123
Table 6.11: Correlation between sum of delta values and output error 125

Table 6.12: Neural network architectures obtained by the new model 128
Table 6.13: Generalization of PSDV and other existing methods 133

xiv

Abbreviations

ADALINE – Adaptive linear neuron

AI – Artificial Intelligence

ANN – Artificial neural network

Bi-search algorithm – Binary search algorithm

CNS – Central nervous system

 – Correlation coefficient of the sum of the delta values of th
 hidden layer and

the output error

etc. – etcetera

i.e. – That is

LTD – long term depression

LTP – long term potentiation

MADALINE – Many ADALINE

MBP – Magnitude based pruning

MLP – Multilayer perceptron

MRI – The Magnetic Resonance Imagine

NN – Neural network

OBD – Optimal brain damage

OBS – Optimal brain Surgeon

PNS – Peripheral nervous system

PSA – Peak search algorithm

PSDV – Peak search and delta value algorithm (The proposed algorithm)

RBF – Radial basis function

SOM – Self Organizing Map

SVZ – Sub ventricular zone

1

CHAPTER 1

INTRODUCTION

1.1 Prolegomena

The field of Artificial Neural Networks (ANNs) has become one of the most cited

areas of Artificial Intelligence (AI). Because of their capability of modelling and

processing parallel on nonlinear relationships of inputs and outputs ANNs can be

used in many real-world problems, which could not be solved otherwise. The first

ANN model was introduced in 1940s and grown through 1950s. Throughout last 50

years with its significant developments, nowadays ANN has become the champion

of Machine Learning. However, there are numerous challengers in designing and

developing of ANNs and determining the most suitable architecture has been

identified as one of the central issues. This thesis examines the current approaches

on designing the ANN architectures and provides a novel approach to determine

more efficient and simpler ANN architecture by pruning hidden layer neurons in a

trained ANN.

This chapter discusses the problem that addresses in this thesis with the background

and motivation. Further, it provides aims and objectives followed by the other‘s

works and their limitations. Next, provides a brief description of the approach to the

solution by emphasizing the hypothesis. At the end, the structure of organization of

this thesis will be presented.

1.2 Aims and Objectives

The aim of this PhD thesis is to discover an approach to prune hidden layer neurons

of a trained network to get a simplified network with same or better performance,

compared the resultant network with the original trained network, enhance the

generalization ability and improve the efficiency of the network.

To achieve the above aims the following objectives have been recognized.

1. Critical review of ANNs and their uses.

2

2. In depth study of current approaches to model hidden layer in ANN.

3. Develop an approach to prune hidden layer architecture of ANNs.

4. Evaluate of the novel approach.

1.3 Background and Motivation

The generalization power of an Artificial Neural Network (ANN) strongly depends

on the number of hidden layers. In general, as there are enough data to capture the

complexity of the given task, multi-layered architectures show better performance

than shallow ones for many real valued applications [1], [2]. However, this solution

of architecture may not be computationally optimized. In addition, networks with

too large and too small number of hidden neurons show advantages as well as

disadvantages. When the network is too large, it learns fast [3]. In addition large

networks form complex decision regions as problem requires and show better fault

tolerance in damage conditions [4]. However, when there are too many parameters,

generalization ability declines as it fails to distinguish similar neurons. In contrast,

networks with too few parameters show better generalization, nevertheless neurons

in these networks do not learn data properly [5], [6].

Artificial Neural Networks are mathematical and computational models for

predicting and decision making, inspired by the functions of the biological central

nervous system. They are very advanced modelling systems capable to solve many

highly complex tasks. The human brain has amazing features that can memorize and

learn from data [7]. Also, when a part of the central nervous system is damaged,

some other neurons maximize their functions to compensate for the damaged ones.

This process is known as fault tolerance. Likewise, ANNs are designed and

developed with similar architecture as structure of the biological nervous system

(Figure 1.1). In addition, as the human brain does, ANNs are able to remember the

features of specific tasks and use them to predict on that task in the future. Because

of these properties nowadays neural networks have been applied to many real world

problems in various fields such as medicine, agriculture, finance, and engineering.

Certainly, when there is a problem on prediction or classification, neural networks

3

are being used because ANNs have shown promising results in solving non-

algorithmic complex problems.

Although there are many advantages of neural networks, the complexity of its error

surface has become a significant problem. The complexity of the error surface

occurs because of some barriers like local minima, flat spot plateaus, and saddle

points. So that the training network has become more complex and also crucial in

performance [8], [9]. In this context, modeling hidden layer architecture is very

important to achieve a better performance for the given problem. Therefore, this

research addresses the problem clearly and approach the hidden layer architecture

by using a pruning method inspired by the concepts of neuroplasticity [10].

Figure 1.1: Diagram representation of central nervous system

1.4 The Problem in Brief

Despite many advantages, there are major difficulties in applying ANNs in real-

world problems. One of the major issues in application of neural networks is

determining the size of the most appropriate neural network architecture, which

used in the particular problem, i.e. the size of the neural network architecture is a

decisive factor.

The number of training cycles (epochs) and the generalization power are the two

main measures to determine the performance of the network. Generalization refers,

how the network performs for any data which was not used in training process [11].

It has been observed that the complex models with too many hidden neurons show

poor generalization as it could not distinguish very close parameters. When there are

too few neurons, the network may not learn properly and yields inaccurate solutions

[12]. On the other hand, generalization power can be improved by using more than

one hidden layer. However, too large networks increase the complexity of the

Input

Stimulus Response Neural

Net

Output

4

architecture and there is a high probability to have local minima problem [5].

Moreover, networks with many hidden layers arise complex computations and it

needs much training time.

Therefore, the determining the optimum ANN architecture for modelling the given

task is very important and still it is a research challenge as the available methods do

not yield the optimized solution with the proper theoretical background.

1.5 Current Approaches to Modelling Hidden Layer Architecture

Generally, there are two fundamental approaches to determine the most appropriate

hidden layer architecture, namely constructive and pruning algorithms. Constructive

algorithms generate with a minimum number of neurons and iteratively increase

neurons and connection weights of hidden layers to reach the most appropriate

architecture [13],[14]. In contrast, Pruning algorithms start with an oversized

network and iteratively eliminate unimportant neurons from hidden layers until the

optimum solution occurs [15],[16].

There are many approaches based on these techniques. Setiono [17] has proposed a

penalty term method to prune the network, where at the end of training, the terms

with smallest values become zero. Also in magnitude based pruning (MBP)

methods assume that smaller weights are irrelevant and eliminate them form the

network structure [18]. Further, optimal brain damage (OBD) [16] and optimal

brain surgeon (OBS) [19] have proposed to determine the less salience neurons

based on the second derivative of the cost function. In addition, many constructive

algorithms had been proposed in numerous ways to obtain the optimal architecture

[13], [20]. There are also hybrid methods which used both addition and deletion of

hidden neurons [21], [22].

However, both constructive and pruning methods have advantages as well as

disadvantages. The constructive algorithms are computationally economic because

they initialize with simple networks. Nevertheless, these solutions are more likely to

5

have the local minima problem as error surface of small networks are more

complicated than error surface of large networks [23]. On the other hand,

successively train of smaller network until the smallest one occurs is time

consuming. In the pruning methods, normally large networks allow reasonable fast

learning and while reduced, network performs better generalization. However, the

pruning techniques are hypothesized, that the initially large sized network allows

the network to learn with less accuracy for the initial conditions [24]. In addition

training a large network is not computationally economic as it takes more training

time. Also, inappropriate deletion of nodes and connections may cause to loose

information. But authors of [12] have shown that the overall time taken to prune

large network to a smaller one is relatively very favorable with that of training a

small network with fewer number of neurons. Hence, it has observed that pruning

techniques are widely used in improving the generalization.

1.6 The Proposed Solution

The approach to the solution is motivated by the finding from neuroscience that the

human brain is a neural network with more than hundred billion neurons [25], yet

our activities are performed by a simpler network with a much lesser number of

neurons. Furthermore, in biological neural networks, the neurons that do not

significantly contribute to the network performance will be naturally disregarded

[26]. According to neuroplasticity, biological neural networks can also solicit

activations of neurons in the proximity of the active neural network to improve the

performance of the network [27]. By the same token, it is hypothesized that for a

given complex-trained artificial neural network, it can discover a network, which is

much more simplified than the original complex architecture but still performs same

or better than the original one.

Another inspiration fact that a single hidden layer architecture does not yield the

best solution in every instance. This idea was stimulated by the functions of

neocortex in the human brain. As shown in the Figure 1.2, the neocortex is the

largest part of the outermost layer of the mammalian brain, which believes

6

responsible for intelligence such as perception, imagination, language, art, music,

mathematics, and planning [28]. It is assumed that the neocortex area of the human

brain has a columnar structure with six layers which contains billions of neurons

[29]. Although artificial neural networks do not perform exactly similar way as the

neocortex, this is a momentous factor to have some large number of hidden layers to

neural network architecture.

The approach describe in this thesis is based on the hypothesis that any large ANN

could be pruned to a smaller sized network without lowering the performance. Thus,

the procedure starts with a complex network with a large number of hidden layers

and hidden neurons which was trained by backpropagation algorithm [30],[31].

The procedure of achieving the optimum architecture has two phases. Firstly, it

designs an algorithm to determine the number of hidden layers in network which

shows the highest generalization. This is done by using the Peak-Search Algorithm

(PSA) which will be described in Chapter 5. In the second phase, the newly

discovered simpler network with the highest generalization power is considered for

pruning of neurons in its hidden layers. The pruning of neurons in the hidden layers

has been theorized by identifying the neurons that give least contribution to the error

decay process. These neurons are identified by detecting correlation () [32]

between the sum of the delta values of the hidden layer h and the output error (E) of

the training cycle, regarding minimization of error in training. While pruning

disregarded neurons, synaptic weights attached to the removable neuron will be

merged with weights of a neuron which is having similar weight vector. The new

method obtained by using Peak Search algorithm and Delta Value is accronymed as

the PSDV algorithm.

Experiments showed that the simplified ANN architectures generated by new

approach exhibit the same or better performance as the original large network

architecture. As such, our approach can be used to discover simpler network

architecture relevant to a given complex architecture of an ANN problem. Due to its

7

architectural simplicity, the new architecture has been computationally efficient in

training, usage, and further training.

The results proved by experimentally using some bench mark problems. The

experimental results show that the network obtained by newly introduced method

performs better generalization with lesser number of hidden neurons compared to

the original network.

1.7 Resource requirements

To reach the goals of the above approach, some software and hardware have been

needed. MATLAB has been used in training the backpropagation algorithm. The

proposed methodology needs an adequate hardware such as processor of 2.50 GHz

and 4GB RAM.

Figure 1.2: The structure of the human brain

1.8 Organization

The rest of this thesis is arranged as follows. A detailed description of artificial

neural networks will be discussed in chapter 2, which includes the different types of

networks, training methodologies and evolution of ANNs. Chapter 3 presents brief

but necessary overview of modelling techniques in artificial neural networks.

8

Basically, these approaches considered under two major titles pruning and

constructive algorithms. Chapter 4 contains the concept of neuroplasticity and

synaptic pruning. It briefly discusses how these concepts relate to the ANNs. The

methodology is presented in chapter 5. It discusses the peak-search algorithm and

pruning method applied in this thesis. The experiments and results appear in chapter

6. The details of data sets and the results of all the benchmark problems present in

this section. In recent years concept of deep learning networks has become a hot

topic in machine learning and using the results for some deep learning networks will

discuss in chapter 7. Finally, the conclusion is given in chapter 8. It discusses in

brief how the model performs for different data sets and limitations arise while

training the data sets.

1.9 Summary

This chapter briefly discussed the background and motivation of the research

problem by highlighting the importance of modelling of the hidden layer

architecture. In addition adequate description of ANN was provided. Further, a brief

description of pruning and constructive methodologies and their limitations were

given. It clearly stated the aims and objective of this research and briefly explained

the proposed solutions. Finally, it discussed the structure of the rest of this thesis.

The next chapter discusses the fundamental concepts on artificial neural networks

that used in our approach.

9

CHAPTER 2

FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS

2.1 Introduction

The previous chapter gave an introduction to the context of thesis by stating the

aims and objectives, the problem in brief and the method of achieving the solution

of the hidden layer architecture in artificial neural networks. The Artificial neural

networks are densely interconnected, parallel computational models for the human

brain. Some of the most important features of ANNs are their adaption to the nature,

ability of learn by experience and the fault tolerance. This chapter focuses on these

basic aspects together with the key development stages of ANNs. In addition,

various types of neural network structures and learning rules of ANNs are taken to

the discussion.

2.2 Preamble to the Artificial Neural Networks

An Artificial Neural Network generally referred to as a neural network (NN) is an

information processing system that inspired by the functions of the human central

nervous system. It is a massively parallel and highly connected distributive

processor, made up with artificially designed units called artificial neurons, which

have capability to store the acquired knowledge from the environment and use it

when necessary. The knowledge is saved in the adjustable interconnected weights

called synaptic weights [33]. In other words, functions of neural networks are very

similar to the behavior of human brain and they yield the corresponding output

when the input is presented.

The human brain, which is formed by elementary units called neurons, is highly

complex, massively parallel and nonlinear information-processing system. The

brain is capable to manage its own structure to perform certain tasks like pattern

recognition and classification faster than any modern computer [34] . On the same

line, artificial neural networks are created as mathematical and computational model

to simulate the functions of biological nerve cells and their interconnection. The

10

most important feature of an artificial neural network is the adaptability to the

environment by changing its structure by experience [35], [36].

Because of these characteristics, ANNs have become very useful and they have

been applied to solve variety of problems in pattern recognition, optimizing and

associative memory in many areas such as medicine, agriculture, physics and

geology. Although some conventional approaches were applied to solve such

problems, many of them were not successfully performed well for their input

domains. However, almost all the applications could benefit from using ANNs as

they show exciting alternative results [37], [38].

The artificial neural networks were introduced once the people realized that the

functions of von Neumann machines are far different from the human brain [33].

Both human brain and computers have many similarities such as increase their

memory, transmit the signals, use electrical signals to send messages, able to solve

mathematical and logical problems, and need energy and much more [39].

However, they use different techniques in these functions. For example, brain uses

chemicals to transmit the signals while computers use electricity. The brain acquires

energy from nutrients, but computers need electricity to work. Moreover, the

capability of the modern computer‘s on solving some complex mathematical based

problems is much faster than that of humans. On the contrary, they are not able to

perform in some perceptual instance such as face recognition. We, human can easily

recognize the face of a friend even in crowd place or recognize him by his voice

without seeing him. However, those fastest modern digital computers available

today are not capable to do such because the architectural design of them is totally

different from the topology of the human brain and these differences strongly affect

the performance of the system. The significant differences of such functions are

presented by jain et al. [38] as shown in the below Table 2.1.

11

Table 2.1: Comparison of Von Neumann computer and the human brain

Function Von Neumann computer Human brain

Processor Complex

High speed

One or few

Simple

Low speed

A large number

Memory Separate from a processor

Localized

Non-content addressable

Integrated internal

processor

Distributed

Content addressable

Computing Centralized

Sequential

Stored programs

Distributed

Parallel

Self-learning

Reliability Very vulnerable Robust

Expertise Numerical and symbolic

manipulations

Perceptual problems

Operating environment Well defined

Well constrained

Poorly defined

Unconstrained

These differences highly affect on the performance of the function. Thus, realizing

these differences made significant role in revealing mechanism of the neural

information processing. As the result of that artificial neural networks were created

by adopting such functions of the human nervous system.

Artificial neural networks are massively parallel distributive structures which can

use to solve parameters involving non-linear and noisy, complex data. In addition,

they are powerful tools which mimic the learning process of the human brain in

modelling, especially when the relationship between input and target is unknown.

ANNs has ability to recognize the correlated patterns and after training, it can be

used to predict the output for new input data. Another important characteristic of an

ANN is its adaptivity to the nature. They have a built-in capability to adapt the

surrounding environment by changing the synaptic weights. Also, neural networks

12

are fault tolerant. That is, if a group of neurons or their connecting links are

damaged, the network has ability to recall the stored pattern to compensate for the

damage ones and performs without degrading the quality. Therefore, nowadays

ANNs have been recognized as very sophisticated modelling technique capable of

model the highly complex nonlinear models [33]. So that they have been used to

solve problems in classification and pattern recognition in a very wide range of

domains.

2.3 The History

The basic concept and some background work on the field of neural networks

happened in the late 19
th

 and early 20
th

 centuries with the fundamental works of

Hermann Von Helmholtz, Ernst Mach and Ivon Pavlov in different areas such as

physics, psychology and neurophysiology. This primary works are highlighted the

theories of fields such as learning, vision, and conditioning, but have not

emphasized a mathematical model of neuron operations [40]. The beginning of

neurocomputing can be traced back to the research article published in 1943 [41] by

American neurophysiologist Warren McCulloh and logician Walter Pitts. In this

article, they had shown that how the brain could produce highly complex patterns

by using many basic cells called neurons that are connected together. In addition, it

emphasized that even a simple model of artificial neurons could, in principle,

compute any arithmetic or logical function. The first model of ANN that McCulloh

and Pitt was presented is shown in the following Figure 2.1.

Figure 2.1: Model of ANN proposed by McCulloh and Pitt

𝑥1

𝑥2

𝑥𝑛

𝑤1

𝑤𝑛

𝑤2 𝑇

13

In 1949 Donald Hebb claimed in his book entitled ―The Organization of Behavior‖

[42] that classical psychological conditioning is presented because of the properties

of an individual neuron. However, this idea was initially proposed by Ivan Pavlov

(1849-1936) and Hebb developed it by proposing a specific learning rule for the

synapses of neurons.

The first practical application of the artificial neural network was introduced with

the invention of perceptron rule by Frank Rosenblatt, Charles Whiteman and their

colleagues [43] in late 1950s. This perceptron network was successfully used in

pattern recognition. At the same time Bernard Widraw and Ted Hoff introduced a

new learning algorithm, Widrow-Hoff learning rule [44] to train adaptive linear

neural networks (ADALINE) which is still using. Both these networks struggled

with their inherent limitations and they were not able to successfully modify the

network to overcome those limitations. Thus, in the late 1960s, people believed that

the ANN has reached to its dead end. Until 1980 interest of neural networks faltered

due to several reasons, such as lack of new ideas and insufficiency of powerful

computers to continue experiments. In 1980, with availability of newly developed

personal computers, research on ANNs significantly increased and researchers came

with several new concepts. The Backpropagation learning rule published by David

Rumelhart [30] is considered as one of the most important concepts of the rebirth of

neural networks.

With the invention of the backpropagation algorithm, the research interest on ANNs

was dramatically increased. Over the last few decades, it has been successfully

applied in a wide area including, medicine, engineering, geology, physics, finance,

and biology.

2.4 Structure of Artificial Neural Networks

The two main components of a neural network are processing elements and

connections. Processing elements are known as neurons or nodes. The link between

any two neurons is called the synaptic weight connection. A weight parameter is

14

assigned to each connection and the weight of the connection from th
 neuron to th

neuron is denoted by . Each neuron receives input signal from the

environment or an adjacent neuron, multiplied by the weight vector and sum up all

such terms. Then passes the summation through an activation function to outside

or another neuron connected to it. The neurons that receive signals from the

environment are known as input neurons and neurons send to signals outside are

known as output neurons [45].

In the model of McCulloh and Pitts each neuron computes the weighted sum of

inputs 1 and corresponding synaptic weights ; associates with

each input and produce the output . The output is 1 if the sum is greater than a

certain threshold value , otherwise 0.

The mathematical expression of the output is

 (∑

) 2 1

where 1 are the weights, y is the output of the network and

represents the unit step function. The positive weights correspond to excitatory

synapses and negative weights represent inhibitory ones. For computational

simplicity threshold value is considered as another weight w associates to an input

with value 1.

In general, an artificial neural network can be represented as a weighted directed

graph, where artificial neurons are nodes and synaptic weights are the directed

edges. Each network necessarily contains a certain input neurons and

output neurons , and it assumes that these neurons lie in layers. So that

the basic structure of an ANN contains an input layer, an output layer as shown in

the Figure 2.2

15

Based on the architecture, artificial neural networks can be divided into two types,

such as

 Feedforward networks

 Recurrent networks

2.4.1 Feedforward networks

The directed graphs with no loops are feedforward networks. Neurons on these

networks are organized into layers. They have static behavior. That is, rather than

provide a sequence of outputs, feedforward networks give only one output at a time

for a particular input. The main categories of feedforward architectures are single

layer feedforward networks, multilayer feed forward networks and radial basis

function nets. These networks are known to be ‗memoryless‘ as each input is

independent of the previous positions. The simplest form of these networks has two

layers, input layer and output layer. However, the most widely used types of

feedforward networks are multilayer perceptron (MLP), which contains a certain

number of hidden layers in addition to input and output layers.

Generally, neurons in the input layer receive signals of information from the

environment and the output layer is responsible to produce the output of the

network. The number of neurons in the input and output layers are fixed and equal

to the number of elements in the input and output vectors of the data set

respectively. The section of hidden layers is the most crucial part of the network.

This imitates the functions of the human brain. That is most of the internal

processing are carried out by the hidden part of the network. The number of hidden

layers and the number of neurons in each hidden layer is uncertain and the solution

of the network strongly depends on the hidden layer architecture of a neural

network.

Single Layer Feedforward Networks

The expansion of the research on feedforward layered networks began in late 1950s

with the presenting of single layer feedforward networks on perceptron by

16

Rosenblatt [43] and ADALINE by Widrow [46]. Generally, a single layer feed

forward architecture has only an input layer and an output layer as shown in the

Figure 2.2. These networks are used in solving only linearly separable problems.

This limitation led to researchers to improve the system and hence, multilayered

feedforward networks were introduced.

Figure 2.2: Single layer feedforward network

Multilayer Feedforward Networks

The feedforward networks with multiple hidden layer units, where all are adaptive,

are known as multilayer feedforward neural networks (Figure 2.3). Unlike single

hidden layer networks, multilayer networks can be used in a wide range of

applications such as pattern classification, face recognition, function approximation

optimization and many more. These structures must contain at least one hidden

layer. Hidden nodes of the network, which contains only one hidden layer receive

signals from the input layer and pass the processed signal to the output layer. When

there is more than one hidden layer, the signals received by the input layer, pass to

the first hidden layer and each hidden neuron pass the processed signal to the

neuron in adjacent hidden layer neurons. Finally, the neurons in the last hidden layer

send the signals to the output layer. Having more hidden neurons, network enable to

𝑚

Input Layer

𝒙𝟏

𝒙𝒏

𝒙𝟐

Output Layer

1

2

𝒚𝟏

𝒚𝟐

𝒚𝒎

17

extract more information rather than simple ones due to the extra set of synaptic

weights and more connections [33]. In multilayer network, it is not necessary to

connect each node with all the other nodes in the adjacent layer. However, the

feedforward network with all the possible connection is called a fully connected

network. But there are instances that some links may missing. Those networks are

known as partially connected networks.

Figure 2.3: Multilayer feed forward network

Radial Basis Function Neural Nets

Radial basis function (RBF) neural nets are the two layer feed forward neural nets

whose activations functions are radial basis functions such as Gaussian function

() [47]. As in MLP the output nodes apply the linear summation of

functions (Figure 2.4). The networks train in two stages. First, adjust the weights

form input layer to hidden layer, then adjust the weights from hidden layer to output

layer [48].

𝒙𝟏

𝒙𝟐

𝒙𝒏

𝒚𝟏

𝒚𝟐

𝒚𝒎

1

2

𝑛2

1

2

𝑚

Input Layer
First hidden
layer

Second hidden
layer

Output layer

1

2

𝑛1

18

Figure 2.4: Radial basis function network

2.4.2 Recurrent networks

The recurrent networks contain feedback loops and hence, their procedure differs

from the feedforward networks (Figure 2.5). The most common recurrent networks

are competitive networks, Kohonen‘s Self Organizing Map (SOM) and Hopfield

networks. Unlike feed forward networks, recurrent networks are dynamic systems.

Once the output computed for an input neuron, it may feed back to the same neuron

and hence, input neuron is altered. Thus, the network leads a new state [38].

Figure 2.5: Recurrent network

19

The classification of neural networks accordance their architecture is described in

the Figure 2.6. The different network architectures use different learning methods

and sections 3.6 and 3.7 briefly discuss the learning process of neural networks.

Figure 2.6: Classification of Neural Networks by architecture

2.5 Activation Functions

In a neural network an activation function, also referred as a transfer function or a

cost function plays a major role in transferring the signals. It controls the

information propagation of each layer by using its nonlinear property. Different

activation functions have different characteristics and thus, they work in different

ways. In general, the same activation function is applied to all the neurons in a

layer. In this section we discuss some widely used activation functions, namely hard

limit function, linear function and sigmoid functions.

2.5.1 Hard limit activation functions

The activation of the type

 {
1

 2 2

20

is called a threshold function. This function is also known as hard limit transfer

function, which is illustrated in the Figure 2.7. In NN, the total input of the th

neuron is given as

 ∑

 2 3

where and , i = 1, 2 …n are input vectors and corresponding weights

respectively. is the bias vector.

So that the output of the th
 neuron is stimulated as

 {

1

 2 4

Figure 2.7: Hard limit function

2.5.2 Linear function

In the linear function, the output of any particular neuron equals to its input. As

shown in the Figure 2.8, the function is written as

When the input of the neuron is , the output . This function is used in

the ADALINE neural networks.

Figure 2.8: Linear function

21

2.5.3 Sigmoid functions

A strictly increasing function, whose graph is S-shape is called a sigmoid function.

The two sigmoid functions, logsigmoid and tansigmoid which depict in the Figure

2.9 are the most commonly used cost functions, especially for the construction in

hidden layers. The log sigmoid function is given as

1

1
 2 5

where is the slope of the curve. By changing the parameter , curves with

different slopes can be obtained. When tends to infinity, sigmoid functions

becomes hard limit function. However, for finite values of sigmoid function is

differentiable. But hard limit function is not.

The tan sigmoid function, given by the equation 2 3 lies between -1 and +1.

 2 6

Figure 2.9: Sigmoid functions

+1

0

+
1

-1

0

Log sigmoid function Tan sigmoid function

22

2.6 Neural Network Learning

One of the basic common features of the human brain and artificial neural networks

is their ability to learn. We human beings are able to learn from our surrounding

environment by using different techniques. Sometimes we used to learn with a

teacher and sometimes learn ourselves, without a teacher. So, it is with artificial

neural networks. They can learn or train in similar ways and perform as humans

achieve their goals. So that, in artificial neural network‘s framework learning is the

updating the topology of the network by iteratively changing its neurons and

synaptic connection to achieve its specific tasks successfully. One of the major

advantages of artificial neural networks is unlike conventional expert systems, they

use the underlying rules in the certain set of examples, instead of following a set of

rules specified by human experts [38]. In the context of ANN, the learning with a

teacher is viewed as supervised learning. The learning without a teacher has two

subdivisions known as unsupervised training and reinforcement learning.

2.6.1 Supervised learning

Supervised learning also referred as ‗learning with a teacher‘ is inspired by the

concept that the teacher has the knowledge on environment. This knowledge is

represented by input-output data set { }. Where are

inputs and are corresponding target outputs. When inputs apply to the

network, it computes the output and measure the error signal. Error signal refers the

difference between actual and target output. Then it adjusts the synaptic weights and

biases to minimize the error signal (Figure 2.10).

2.6.2 Reinforcement learning

The reinforcement learning is like supervised learning. However, here algorithm

gives a scalar or a grade instead the correct output for each input. There is no

teacher or exact output at each step of learning and the main goal of this learning

procedure is to minimize the expectation of the cumulative cost of action on the

23

steps of iterations. These applications are not much more common as supervised

learning.

Figure 2.10: Block diagram for supervised learning

2.6.3 Unsupervised learning

As shown in the Figure 2.11 below, in unsupervised learning, there is no teacher or

a critic to observe the learning process. Hence, in unsupervised learning algorithms,

instead of providing specific task to learn, it introduces a task independent measure

to be learned and the network is self-organized by adjusting the synaptic weights

and biases to achieve those measures. By applying this procedure sequentially one

layer at time, it is able to extend to train large networks with many hidden layers.

For a particular task, once the network has become tuned to the statistical

regularities, it is able to form internal representation which encodes features of the

input in a more explicit or simple form [49].

Unsupervised learning algorithms are used in competitive-learning rule, where the

nodes compete with each other give the chance to respond to a subset of the input

data [50]. In its simplest form network works according to the winner-takes-all

strategy. That is neuron with the greatest input wins and turn it on while rest of all

the other neuron turn off [33].

24

Figure 2.11: Block diagram for unsupervised learning

2.7 Learning Algorithms

The machine learning concept was initially presented by Nilson [51] in 1965. The

learning process of artificial neural networks is very similar to that in biological

neural system. Some neurons can be trained only by using local signals, while some

may require knowledge of output neurons. As discussed in previous section, some

neurons may need a teacher to learn and some are able to self-learning without a

teacher. We can notice that all these learning are done accordance to a set of

systematic rules. Here we discuss the some of the basic learning rules such as

 Hebbian learning

 Error correction learning

 Boltzmann learning

 Competitive learning

2.7.1 Hebbian learning

Hebbian Learning algorithm, referred as Hebb’s postulate of learning is the oldest

learning algorithm which was proposed by the neurophysiologist Donald O. Hebb

[42] in 1949. This was initially introduced as a possible mechanism for synaptic

modification for the brain cells and since then, it was used to train artificial neural

networks. Hebb‘s book stated the following postulate (pg. 62).

 “When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

25

takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased.”

This change in Hebb‘s learning was proposed for associative learning. Hebb‘s

postulate expand and rephrase in to two-part rule as follows [33].

1. If two neurons on either side of a synapse (connection) are activated

simultaneously (i.e., synchronously), then the strength of that synapse is

selectively increased.

2. If two neurons on either side of a synapse are activated

asynchronously, then that synapse is selectively weakened or

eliminated.

These synapses are called Hebbian synapses. Mathematically Hebbian learning

can be expressed as follows.

Let the signals of two neurons and be and respectively, and connection

weight from neuron to neuron be . Then and are called pre-synaptic

and post-synaptic respectively. Thus the weight update of can be written as a

function of both pre-synaptic and post-synaptic signals. That is

 () 2 7

Function has many forms all such with the Hebb‘s postulate. So that the

simplest form of above equation 2 7 can be written as

 2 8

where is a positive constant known as learning rate. The most important feature

of this relation is weight update depends only on the output signals of two

neurons. This rule is defined for unsupervised learning and it does not require the

information of desired output.

26

2.7.2 Error correction learning rules

In supervised learning, the network is trained for input/output patterns

{ }, where are inputs and are desired outputs.

The main objective of the learning is to minimize the error between actual output

and the desired output. Actual output is the output generated by the network for

the input . The error signal of the output neuron is defined as

The fundamental concept of error correction rules is to gradually reduce by

upgrading the connection weights. The first practical error correction learning rule

is the perceptron learning rule.

2.7.2.1 Perceptron Learning Rule

The perceptron was the first algorithmically illustrated network and hence, it takes

very special place in neural network learning. The algorithm was introduced by

Rosenblatt [43] in the late 1950s. The features of this network is similar to the

network introduced by McCulloh and Pitts [41]. In the model of McCulloh and

Pitts, the output is determined by comparing the weighted sum of the input signals

to a threshold value. If the sum is greater than the certain threshold value output is

1, otherwise the output is zero (0). The key feature introduced in perceptron network

is the learning rule in pattern recognition. The learning was simple and automatic.

Also, it can learn for random weights and biases. The learning occurs only when

network gives an error (Figure 2.12). Rosenblatt proved in his literature that this

learning rule always converge to the correct weights. This is known as the

―perceptron convergence theorem”.

27

Figure 2.12: Perceptron Algorithm

The perceptron model, which is shown in the below Figure 2.13 contains only a

single neuron and limited only for pattern classification problems. The node

computes the sum of the linear combination of all inputs and corresponding synaptic

weights and bias. The resulting sum applied to the hard limiter. If this resulting sum

is positive or zero network gives 1, otherwise the output is 1.

As shown in the Figure 2.13 inputs to the single node are represented by

 and corresponding synaptic weights are . The

externally applied bias is denoted by . The net input for the single neuron is

 ∑

 2 9

Then output is given as

 {

 1

 1

 2 1

𝑤 𝑛 1 𝑤 𝑛 𝜂 × 𝑒 𝑛 × 𝑥 𝑛

𝑏 𝑛 1 𝑏 𝑛 𝜂 × 𝑒 𝑛

Variable and Parameters

𝑥 𝑛 : Input vector

𝑤 𝑛 : Weight vector

𝑏 𝑛 : Bias

𝑦 𝑛 : Actual output

𝑑 𝑛 : Desired output

𝜂: learning rate parameter, (a number between 0 and 1)

Initialization

𝑤 ;
𝑏 ;

Do the following until stopping condition is satisfied

 Compute 𝑦 𝑛 the output for each input 𝑥 𝑛

error (𝑒 𝑛 = 𝑑 𝑛 𝑦 𝑛

28

In two class classification problem, classes are separated by the decision boundary

given by the linear equation

 2 11

If 1 in the above equation 2 1 , perceptron assign input to one particular

class and if 1 to the other class.

Figure 2.13: The perceptron learning rule

However, the perceptron learning algorithm has inherent limitations, which were

highlighted in the book written by Marvin Minsky and Saymour Papert [52]. They

argue that the perceptron network fails in applying certain elementary functions to

understand more complex networks.

Until 1980s there was no significant development of ANNs to overcome this

problem. With the presented of backpropagation algorithm, ANN became very

popular and a dramatically increase of research of ANN can be seen. Nevertheless,

the perceptron learning algorithm is considered as a very important algorithm as

understanding of perceptron network helps to provides good basic knowledge to

learning process of ANNs.

2.7.2.2 Backpropagation Learning

The backpropagation algorithm, depicts in the Figure 2.14, is the most widely used

learning algorithm in artificial neural networks. Although, it was firstly introduced

29

in 1970, the importance of the algorithm was fully appreciated with the paper [30]

published by David Rumelhart, Geoffrey Hinton and Ronal Williams in 1986 [53].

The intend of the backpropagation algorithm is to minimize the error of the network

is given by the cost function

 ∑()

 2 12

where and are actual and desired outputs of the neuron of the output layer.

is the number of neurons in the output layer. The algorithm expresses ⁄ of the

cost function with respect to any weight w and this expression tells that how quickly

cost changes with respect to the weights and the bias. Backpropagation is a fast

learning algorithm. Not only that, but also it tells in detail that how the changes of

the bias affects in the overall behavior of the network during the training.

The procedure initializes with choosing random weights. After choosing weights,

network computes the cycle error by using the error function shown in equation 2 7

The algorithm contains four major steps as follows [54],

1. Feedforward computation

2. Backpropagation to the output layer

3. Backpropagation to the hidden layers

4. Weights update

The algorithm stops when the error decreased to the required level.

Feedforward Computation

The input vector []

 presents to the network. Weights are initialized

and evaluated derivatives of the activation functions are also fed at each neuron.

The input of the th
 neuron of the output layer at the th

 iteration is

 ∑

 2 13

30

 is the number of hidden layers and is the connection weight between i
th

 neuron

of th
 hidden layer and th

 neuron of the output layer. Number of neurons in th

hidden layer is . When the activation function of the output layer is , the output

of neuron at th
 iteration is

 () 2 14

Then the error of th
 neuron of output layer at th

 iteration is

 2 15

Where is the expected value of the th
 neuron at th

 iteration.

Then the instantaneous total error of the whole network is defined as

1

2
∑()

1

2
∑

 2 16

Where is the total number of neurons in the output layer.

According to steepest descent algorithm [55], [56] the change of weight vector is

proportional to

i.e.

 2 17

where is the learning rate. As the change of weight spaces, reduces the error it

holds the minus sign.

By applying the chain rule

 ()

 ()

 2 18

31

By differentiating equation 2 16 with respect to

 2 19

Differentiate equation 2 14 with respect to . Then we get

 1 2 2

Then by differentiating equation 2 14 with respect to

 ()

 () 2 21

and by differentiating equation 2 13 with respect to

 ()

 2 22

Then equation 2 18 implies that

 1

 () 2 23

From equations 2 17 and 2 23

 () 2 24

Now define as follows

 () 2 25

Backpropagation to the output layer

When is an output layer neuron, it is straight forward and easy to compute. In this

case the change of synaptic weights calculates according to equation 2 27 below

by applying the delta value derived by equation 2 25 .

Backpropagation to the hidden layers

When is a neuron in hidden layer , a desired value is not assigned to this neuron.

Then the error signal is computed recursively and backward by using the error

signals of all the neurons in layer 1 that connected to neuron j directly.

Then, as described in [30] and [33] delta value
 for hidden neurons j of layer h

can be given as

32

 (
)∑

 2 26

where is the number of hidden neurons in the th
 layer and

 is the delta

value of th
 neuron of (1)

th
 layer.

Weights update

After computing delta values, synaptic weights update in the negative gradient

direction as shown in the equation 2 17 The new weight of is expressed as

 1 2 27

Weights are updated only after the computation of backpropagation error in all the

neurons. Otherwise, corrections intertwined with the backpropagation of the error

and weights updated do not correspond to the negative gradient direction [54].

Figure 2.14: Backpropagation learning algorithm

33

2.7.3 Boltzmann learning

The Boltzmann learning was invented by Hinton et al. [57] in 1985. Neural

networks, which use Boltzmann learning, are known as Boltzmann machines. They

are symmetric recurrent networks, which make stochastic decisions whether to be

on or off (1 for ‗on‘ and 1 for ‗off‘). Symmetric refers that the synaptic weight

of neurons to neuron equals to the synaptic weight of neuron to neuron That

is . The neurons of Boltzmann machine are portioned into two functional

groups; visible and hidden as shown in the Figure 2.15.

The visible units make the interface between network and the environment. During

the training all the visible units are clamped for specific states by the environment.

Also, in testing any subset of visible units may be clamped. But the hidden units

behave in opposite way. If they exist, they never clamp and always activate freely

[58].

The objective of Boltzmann learning is to produce a neural network that accurately

models input patterns according to the Boltzmann learning. In the Boltzmann

learning the correction of the weight from th
neuron to th

 neuron is given as

 (̅) 2 28

where is the learning rate. ̅ and are the corrections between the states of

neurons i and j when the network operates the clamped mode and non-clamped

mode respectively. These values are computed by Monte Carlo experiments [59],

which is known as a very slow process.

34

Figure 2.15: Boltzmann Machine

Boltzmann learning is very similar to error correction learning procedure. Instead of

computing error between desired and actual outputs, Boltzmann machines consider

the difference of error of the correlation between the outputs of two neurons under

clamped and free running mode [38].

2.7.4 Competitive learning

In the competitive learning output units compete with each other for activation. At

the end, neuron with the greatest total input wins the competition and turns on while

all the other neurons turned off. So that at any instance only one output neuron is

activated. This is called the ‗winner takes all’ strategy.

Competitive learning clusters input data. By using the correlation of data, it

automatically groups the similar patterns and represents them by a single neuron.

Each output unit 1 connects to all the input units including itself

and connection weight between and is . According to the learning rule the

neuron with the largest input wins the competition, when [38].

2.8 Summary

This chapter briefly discussed the fundamental concepts of artificial neural

networks. Feedforward networks are the most commonly used NNs. Due to its

35

inherent properties such as learn by experience and fault tolerance ANNs have been

used to solve many real-world problems. The networks can train in supervised or

unsupervised manner and backpropagation learning algorithm has widely used to

train the multilayer feedforward networks. The next chapter will focus on the

current approaches in modelling the hidden layer architecture and their strengths

and limitations.

36

CHAPTER 3

CHALLENGES IN DESIGNING OF NEURAL NETWORKS

3.1 Introduction

The previous chapter discussed the fundamentals of artificial neural networks.

Further it pointed out how ANNs learn with different types of learning rules. The

current approaches related to our research are reviewed in this chapter. Firstly, it

briefly discusses about the problem on designing the optimal architecture. Next,

focus on the various approaches in modelling the hidden layer architecture in ANNs

with their adopted technologies, strengths and weakness of each method. Finally, a

summary will be given on the available researches, which helped to enhance our

research work on this context.

3.2 The Problem of Designing the Optimal Architecture in ANN

The determining the hidden layer architecture is crucial in ANNs as some

inappropriate architectures increase the training time, indicate poor generalization

and cause non-convergence [60], [61]. It is known that, networks with higher

number of hidden layers give more generalized solution. However, this architecture

may not be very economical. Optimal neural network architecture reduces the

computational complexity whilst improving the generalization ability. Therefore,

before neural network employs its structure must be known. Determining the

minimal network architecture is known as a difficult task and hence, often it comes

down as a trial an error work [62]. To address this problem, researchers have

applied different types of neural networks structures such as feedforward neural

networks, recurrent neural networks and radial basis function etc., for various types

of applications.

Because of its flexibility, good representational capabilities, and availability of large

number of training algorithms, the feedforward neural networks are the most

common and widely used network architectures [63]. It is known that feedforward

37

networks with large number of hidden neurons are able to learn fast by avoiding

local minima. Also massively parallel networks form more complex decision

regions [4] and they exhibit certain degrees of faulty tolerance under damage

conditions [64], [65]. Nevertheless, when there are too many hidden neurons,

hidden layers, and connections data may over-fit and show poor generalization. In

addition, if the network is too large, it bears more nodes, more hidden layers and

connections than required thus, it yields the unnecessary computational cost and

arithmetic computations. In contrast, when the network is too small, it saves

expensive hardware implementation time, but may not be able to learn the

input/output relationships properly. Hence, design the optimal architecture i.e., the

architecture which is large enough to learn maximum data and small enough to

perform good generalization, is very important and remains as a research challenge.

There are a certain number of approaches to overcome this problem. In general,

hidden layer architecture of neural networks is determined by various pruning,

constructive, pruning-constructive and some evolutionary techniques.

A one of the most common methods to approach the minimal architecture is by

pruning unimportant hidden neurons [12]. This process is starting with a network

larger than needed and trim down to the optimal solution [15], [19], [62],. The

second approach is reaching to optimal solution by a constructive algorithm, where

optimal architecture obtains by adding neurons and connection weights to a minimal

network until the acceptable approximation accuracy is achieved [13], [14], [66].

There are number of hybrid methods of pruning and constructive algorithms to

achieve the hidden layer architecture [67], [68]. These algorithms decide the

neurons to be added and then gradually remove unnecessary neurons from the

network. In addition, some evolutionary techniques have been used in optimizing

the hidden layer architecture [69],[70].

3.3 Pruning Algorithms

Most of the pruning methods approach the solution by a brute-force algorithm,

which systematically searches all the possibilities for the solution and checking

38

whether all the answers satisfy the required error conditions. When the output error

is too large, either weights are updated or remove the corresponding neurons from

the system. While the signal is forwarded through each layer, it takes time,

where is the number of weights. For training patterns, the total time taken to

pass the signal is . Thus, this process is very slow and time consuming as

many neurons have to be trained [15], [71].

Most of the available pruning algorithms belong to two broad classes, sensitivity

methods and penalty term methods. The first class estimates the sensitivity of the

error function of the removable neurons where, sensitivity factor is defined as the

derivative of the output error with respect to the connection weight [16], [62]. Thus,

the nodes with least effect are identified as removable nodes and remove them from

the network. The penalty term methods add terms to objective function (Activation

function) that tends network to an efficient solution. The adding term proportional

to the sum of all the weight magnitude [15]. Apart of those, magnitude-based

pruning (MBP) [18], [72] evolutionary pruning methods [12] have been used to

eliminate irrelevant neurons. MBP is the deletion of the connection weights with

less saliency. It assumes that deletion of weights with less salience will cause only

minor effect on the performance of the entire result. In most of the methods,

backpropagation algorithm is used to train the network and the end of the training

for reasonable error, the connection weights with the smallest magnitude are

removed and the resultant network is trained until it tends to the desired error.

3.3.1 Sensitivity calculation method

Mozer and Simolensky [73] proposed a method to automatically trim least relevance

units and construct a skeleton version of the network. The relevance of unit i is

measured based on the error () of the linear function

 ∑∑| |

 3 1

39

where is an index over patterns over output units. and are target and

actual outputs respectively, and defined as

 3 2

Where is the error of the network on the training set. Before calculating this, it

introduces activity of unit j, by using additional strength of , which is considered

as gating of activity of the unit

 (∑

) 3 3

Where is the connection strength from i to j and s the sigmoid squashing

function. When is zero, the unit has no influence on the rest of the network. If

 =1, unit i is a conventional unit. Thus, the relevance of the unit is rewritten as

 3 4

This is approximated by the derivative

 ̂

 3 5

This derivative can be obtained by error propagation [74] procedure which is very

similar to backpropagation method. When ̂ comes down to a certain treshold

value, the unit can be deleted. In this study authors claim that ⁄ fluctuates

strongly in time, thus exponentially decaying time average of the derivative, to

minimize the fluctuations the following formula.

 ̂ 1 8 ̂ 2

 3 6

End of the pruning it observed that the pruned system also performs in the same

efficiency even though there are less parameters. However, learning process of this

network is considerably slow and hence, hard to apply for large sized networks.

40

The optimal brain damage (OBD) [16] and the optimal brain surgeon (OBS) [19]

are the most popular sensitivity based pruning algorithms. To determine the

unimportant neurons OBD measures ‗the saliency‘ of neurons by using the second

derivative of the error with respect to the connection weights. When the objective

function is approximated by Tailor‘s series and the weight is perturbed, change

in the objective function is given by

 ∑

1

2
∑

1

2
∑

 ‖ ‖ 3 7

where ‘s are the components of gradient of . That is

 3 8

 ‘s are the components of the weight correction and ‘s are the elements of

the Hessian matrix [75].

 3 9

The main objective of the algorithm is to find parameters whose removal will cause

to minimize the error . When the network is large Hessian matrix becomes

enormous. Hence, authors assume that the matrix is diagonal and so that the cross

terms are ignored. Therefore, the third term of equation 3 1 is eliminated. Also,

pruning is done on a well-trained network in order to obtain minimum . Hence, the

first term of the equation is zero. This leads to

1

2
∑

 3 1

Then define salience as

2
 3 11

and remove low salience parameters from the network.

Authors in [76] presents a quantitative results on the performance of OBD and

highlighted that certainly OBD increases the learning performance and improves the

41

generalization ability of the network. However, in practice Hessian matrix is not

diagonal for all the instances. However, by proposing ―Optimal Brain Surgeon‖

(OBD) Hassabi et al. [19], [77] argue that the Hessian matrix is strongly non

diagonal for all the instances and hence, it may eliminate incorrect weights.

Although, OBD and OBS derived by the same theoretical approach, based on the

second order derivatives, OBS is more complex than OBD as it does not make any

assumption on Hessian matrix [78]. Authors argue that OBS is significantly better

than other magnitude-based pruning algorithms. However, this approach is quite

slow and requires much memory and yields much complex computations especially

when it deals with the inverse of the Hessian matrix.

G. Castellano et al. [12] proposed a method to iteratively prune hidden neurons from

a feed-forward neural network. The proposed method solves a linear system in the

least square sense using pre-conditioned conjugate gradient procedure. Authors

claim that the algorithm formulates the pruning problem in terms of defining a

system of linear equations in a very efficient conjugate gradient least square

procedure and removes weights by preserving overall network behavior.

They claim that this algorithm shows number of new features as follows.

 It does not make use of any working parameters as some other algorithms

describe in the literatures [72] , [79] and [80] . Hence, it does not require the

tuning phase.

 It does not require any training phase after pruning as in ‗Optimal Brain

Surgeon‘ and it requires far less computations.

 Algorithm can be applied to any arbitrary topology and eliminates hidden

neurons as well as weight connections.

This algorithm has similarities with some other algorithms such as the method

proposed by Sietsma and Dow [72] to remove redundant hidden neurons and adjust

remaining weights. Nevertheless, authors reach to the goal by solving a linear

system without considering the redundancy of individual neurons. In addition,

42

network designer enables to monitor the behavior of network pruning and hence, its

own stopping criteria can be defined.

However, the proposed method has been applied for very small architectures with

one hidden layer. The maximum number of hidden neurons is less than 5. Hence,

there is a possibility to change these results for topologies with large number of

hidden neurons. On the other hand, when the network is large, matrix on the system

of linear equations may have deficiency rank and hence, infinite number of solution

may occur [8].

Apart of the above approaches, Lauret et al. [81] proposed a technique to prune a

single hidden layer network based on extended Fourier amplitude sensitivity test

[82] (EFAST). Although, this method shows some acceptable performance in to

smaller sized networks, there are limitations to extend the criteria for multilayered

architectures. Zeng and Yeung [83] presents a pruning method with help of

quantified sensitivity measure. The method removes neurons with least relevance

from hidden layers of multilayered perceptron. The concept is based on that the less

relevance neuron‘s contribution to the network is negligible and thus, removal of

least relevance neuron does not degrade the performance. This method discusses

only neuron pruning and there is no theory to determine the number of hidden

layers.

Sabo and Yu [62] presents an algorithm called hybrid sensitivity analysis with re-

pruning (HSAR) by combining the advantages of local sensitivity analysis, local

variance sensitivity analysis [84] and cross validation punning method [85]. The

sensitivity is estimated by

 ∑[]

 (

)

 3 12

where is the total number of iterations needed to minimize the objective function

and is the learning rate. is the weight correction of .

 and

 are the

final value and the th
 iteration of weight . Then it Computes the value of local

43

parameter variance nullity (LPVN) and prunes the neurons with parameter whose

LPVN is less than a certain a threshold value. The pruned network is retrained and

its performance is evaluated. If the pruned network shows better performance,

continue process for a smaller network until there is no parameter to prune. If there

is no any improvement, continue pruning process with the old network.

The main drawback of this approach is that the network processes with only weight

connection pruning. The neuron pruning is not considered. However, if all the

connections are possible to prune, neuron will be removed automatically. But

practically, this needs many iterations and hence, this solution is not very feasible.

Suzuki et al. [86] discussed on synthesizing filters using a multilayer neural

networks. This approach reduces both neurons and hidden layers based on the

network error. After removing neurons, network retrain to repair the damage

occurred while reducing. Fnaiech et al [87] have been approached to hidden layer

architecture in feedforward neural networks based on that the feedforward neural

networks could be represented by Volterra series [88], [89] such as a input/output

model. It approaches the minimal architecture in 3 steps. Firstly, create a nonlinear

activation function of hidden neurons as Taylor‘s expansion, then express the

network output as a NARX (nonlinear auto regressive with exogenous input) model

and finally, use the existing algorithm for nonlinear order selection. This literature

selects the most relevant signal of the NARX and uses backpropagation algorithm to

prune the hidden nodes.

In [90] authors had been approached to hidden layer architecture in Madeline [91]

by using a sensitivity-based algorithm. Adeline (adaptive linear neuron) is a single

layer artificial neural network (Figure 3.1) whose activation function is hard limit

function which, gives two output values +1 and -1. Madeline consists of many

Adaline‘s arranged in a multilayer net. The difference between standard neural

networks and Adaline is in the standard neural networks weighted sum is passed to

the activation function and the weights are adjusted by using function‘s output. In

44

the Adaline the weights in the learning phase are adjusted according to the weighted

sum of the inputs [92].

According to the definition, sensitivity is to analyze the dependency relationship

between output variation of the network and its parameter disturbance. Although,

many existing approaches on sensitivity based pruning algorithms consider weight

disturbance, authors in [90] discuss the sensitivity computation with architecture

variation. In this method, firstly train the network by using Sensitivity-Based

Adaptive Learning Rules (SBALR) [93] and prune Adaline by using the formula

until it reaches to target architecture.

This approach proves that for some instance, multilayer architectures perform with

better generalization and it can reduce to target network by pruning Adeline.

However, it has not discussed the argument of deciding the target architecture and

evidence to accept it as the most appropriate solution.

Augasta et al. [64] presented a pruning method called Neural Network Pruning by

Significance (N2PS) by combining the advantages of both Variance Nullity Pruning

(VNP) [94] and the Xing-Hu method on construction multilayer perceptron using

information theory [95]. Although it performs well in single hidden layer networks,

the method has not discussed implementation on multilayered structures.

Figure 3.1: Adaptive linear neuron

45

Xu and Ho [96] have proposed an algorithm called subset-based training and

pruning on the node dependent and Jacobean rank deficiency. At each iteration, it

identifies the dependent nodes by applying column permutation to the output nodes.

Then makes weights on output nodes to zero and only independent nodes train by

Levenberg–Marquardt (LM) algorithm [97]. End of the training, a unit-based

optimal brain surgeon pruning method applies to remove the insensitive hidden

neurons and reduce the size of the network. There are several advantages of this

method such as due to subset-based training and pruning method, only a subset of

independent hidden nodes is trained. This is time saving and saves computational

cost on training excess data. Secondly, an extra term is not added to the cost

function and hence, there is no lengthy tuning phase. In addition, re-training is no

need after pruning. At the end, authors claim that their proposal could be applied to

multilayer perceptron. However, it does not clearly explain the way of determining

the correct number of hidden layers in the optimum architecture.

3.3.2 Penalty methods

The Penalty methods reach the solution by adding a penalty term to the cost

function to minimize the weights. So that, small weights ultimately become zero.

Therefore, weights are removed from the network when they reach to a certain

threshold.

Yves Chauvin [98] introduces a cost function

 ∑∑()

 ∑∑ (
) 3 13

where is a positive monotonic function. Sums take over output units and set of

hidden units . Number of patterns considered is the first term of this cost

function is a standard error function in backpropagation algorithm. The second term

is called the energy function, which measures the average energy spends by the set

of hidden neurons. The parameters and are used to balance two terms. The

minimum of the above function obtains when desired and actual outputs

(are same and when energy of hidden units is zero.

46

In [99], ji et al. present a method by adding two terms to backpropagation learning

rule. The first term removes all possible nodes form the network while maintaining

the acceptable level of error on the output layer. The other term creates to minimize

the weights as much as possible. The process starts by training a feedforward

network having one input unit, a single layer of hidden sigmoidal units, which is

larger than the necessary and one linear output. The data of training set are given

by { 1 } where the desired output of is . The output of the

network is given by

 ∑

 3 14

Where and are the input and output weights of the th
 hidden unit respectively.

 is the corresponding threshold value. ,

 and 1 1 ⁄ .

Then the standard error function given by Rumelhart et al. [30] can be written as

 ∑[] 3 15

A hidden unit defined as significant if it connects to both input and output units with

weights greater than one and quantity of the significance is given as

 3 16

where

1
 3 17

Then error obtains by adding a term to as follows:

 3 18

where and are corresponding learning rates and

 ∑∑

 3 19

47

After applying gradient decent learning rule, weights and threshold values are

updated as

 3 2

 3 21

Here

2

 1

Therefore,

⁄ becomes zero for large | | and hence, dominant weights

will stable. Somehow, conflict between two gradiant terms of the above equation

may disturb the stability and hence, suggested to add the last term after the network

has learned well. Then, is modified as

 3 22

where is defined as a characteristic standard error. Then the second

modification of weights and threshold value are given by the following equations

that reduce the larger weights from the network.

 3 23

 3 24

It takes the term as

 |

 | 3 25

Once the performance reaches to an acceptable level, nodes whose weights are

smaller than certain level will remove from the network and hence, the network

becomes simpler. Nevertheless, it has noted that modified error function increases

48

the training time. Moreover, the method is built for single hidden layer networks

and needs some modifications to extend for multilayers neural networks.

Rudy Setiono [17] has presented a penalty function

 ∑ (∑

1

 ∑

1

)

 ∑ (∑

 ∑

)

 3 26

by combining the works in [100] and [101]. Where and are small weight

decay constants. is the number of output units. is the number of hidden units in

the network and represents the number of inputs. is the weight from th
 input

to th
 hidden unit and is the weight from th

 hidden unit to th
 output neuron.

Author of this paper claims that first part of the function controls having

unnecessary connections while the second term prevents on getting large amount for

these weights. However, there is no guarantee that this function is not removing

weights which are significant. The eliminating such weights might cause for local

minima on the error surface.

All the above methods have significantly contributed to develop the techniques in

modelling of hidden layer architecture of ANNs. However, each method has its own

advantages and drawbacks. Some techniques remove even important nodes while

they remove the irrelevant ones. For example, MBP methods eliminate some

relevant neurons as they remove all the neurons with small magnitudes. Another

major barrier of many methods is their low efficiency. In case of OBD and OBS,

although they remove cluster of neurons at once, they are not computationally

economic when the networks are large. The sensitive analysis methods are based on

the assumption that both the inputs of the network and output of hidden neurons are

no mutually independent. So that they are not guaranteed to remove all redundant

processing elements [65].

49

3.4 Constructive Methods

A Constructive neural network starts with a minimal network architecture and

dynamically increases the network by adding hidden layers, hidden neurons and

connection weights while training until the satisfactory solution. Constructive

learning algorithms alter the network architectures as learning proceeds, producing a

network with the proper size [102]. These algorithms extend the searching for

solution to whole possible structure. Firstly, they search for a simple solution and

extend it for near minimal architecture which exactly suits for the given task. Once

it successful, the algorithm can extend to estimate the solutions for more complex

practical problems. Different constructive algorithms can be used to manage

learning measures such as training time, network size and accuracy [103].

The main advantage of constructive algorithms is they are easy to initialize. But in

pruning methods it is not known initially how large network should be taken. In

addition, constructive algorithms are more computationally economical as they train

small networks and the suitable network is chosen during the training [104].

Another advantage of constructive algorithm is, since constructive algorithms give

smallest possible network it reduced the training time to find optimum network

which gives the best generalization [105]. There are many constructive neural

networks and some of them are listed below.

3.4.1 Cascade correlation algorithm

The most well-known and widely used constructive algorithm is Cascade-

correlation algorithm which published by Scott Fahlman and Christina Lebiere [13]

in 1990. Cascade correlation is designed by combining two key ideas, namely

‗cascade architecture‘ and ‗learning algorithm‘. Cascade architecture is referred

that, adding hidden neurons one at a time to the network and they do not change

once they have been added. Learning algorithm creates and installs new hidden

units and for each hidden unit it tries to maximize the magnitude of the correlation

between the output of the hidden neuron and residual error signal.

50

The method starts with a minimal network and automatically trains and adds new

hidden units one by one and builds a multi-layer structure. Once a new node is

added to the network, it becomes a permanent feature-detector by freezing the input

weights and then its output weights are able to create a more complex feature

detector. The main objective of this algorithm is to attempt to solve several

problems and limitations on the backpropagation learning algorithm as they

observed that the way of the training network by a backpropagation algorithm is

slow. The authors claim that two major problems cause of the slowness of the

backpropagation algorithm, namely ‗step size problem‘ and the ‗moving target

problem‘.

Figure 3.2: Structure of the cascade algorithm

In backpropagation algorithm, the first partial derivative ⁄ in each weight

computes to minimize the error at every step. So that choosing infinitesimal step

size may cause to local minima and too large step size will not converge to a good

solution. To determine the reasonable step size, sufficient information such as

curvature of the step function, the vicinity of the current point must be known. But

these are not available in the standard backpropagation algorithm. As the second

weakness of the backpropagation, the authors show that each neuron in the network

51

is trying to change its feature in every iteration. This process is highly complicated

as the hidden units in the given layer cannot communicate on another directly. So

that it must allow only a few of the weights in the network to evolve at once while

keeping others constant. However, the cascade correlation algorithm decides to have

an extreme version of this technique such as, only one unit changes its features at

any given time. The model of the network of the cascade-correlation algorithm is

very similar to the pyramid structure which describes below. The main difference is

instead of output layer cascade architecture adds new nodes to hidden layers as

shown in the above Figure 3.2 [106].

3.4.2 Dynamic node creation algorithm

The dynamic node creation (DNC) algorithm [14] is supposed to be the first

constructive algorithm for designing single layer feedforward networks dynamically

and there after many other constructive algorithms such as [107],[108] and [109]

were derived of the technique of this algorithm. Here a single hidden unit is added

to the same hidden layer, one at a time and whole network trains after adding each

unit. This method is simple and convergent for a small sized architecture. However,

some computational limitations arise when the network is large.

3.4.3 Tiling algorithm

The tiling algorithm is proposed by Mark Mézard and Jean-Pierre Nadal [110],

which constructs a layered network where neurons are added like tiles when they

are needed. Each layer has two types of units as shown in the Figure 3.3; the first

type has major role is called the master unit and all the other units in the layer are

ancillary units. The certain master neuron classifies more patterns than the master

neuron of the previous layer and the process continues until the master unit of a

certain level is classifying all the training examples. Otherwise, add ancillary units,

which are known as tiles, until the layer becomes faithful. Then use the pocket

algorithm with ratchet [111] to train new ancillary units and a new layer [106].

52

Figure 3.3: Tilling Algorithm

3.4.4 Tower algorithm

The tower algorithm, which firstly presented by Stephen Gallent [111] builds a

tower of threshold logic units by making single-cell learning. As shown in the

following Figure 3.4, the bottom most neuron receives signals from original inputs

and the neuron immediately below it. Each neuron is trained separately by using the

pocket algorithm with ratchet and after trained, the connection weights of the

particular neurons are fixed. Then this output and the neurons in the input layer

become inputs to the next neuron in the tower and process continues until the

desired classification accuracy is obtained [106].

Figure 3.4: Tower Algorithm

53

3.4.5 Pyramid algorithm

The pyramid algorithm also created by Stephen Gallent [111] and it is very similar

to the above tower algorithm. The difference of this algorithm is the new neuron is

connected to all the previously trained neurons as depicts in the Figure 3.5. The

pyramid algorithm generates single cell model by using the pocket algorithm and

train it by pocket algorithm with ratchet. If the network shows better performance

freeze the weights of newly added neuron and add another neuron to the structure.

Apart the above, Friedman [112] has proposed a constructive technique projection

pursuit regression (PPR), which is similar to DNC. Also [113],[114],[115], [116]

and [117] are presented constructive methods inspired by PPR. Unlike DNC, these

algorithms add more complication functional form hidden units and instead of

retraining whole network, train only the newly added hidden units. Rivals and

Personnaz [118] discussed a model selection procedure based on the least square

estimation and statistical tests to determine the optimal number of neurons in one

hidden layer networks. The complete procedure has two phases. The first phase

based on bottom-up strategy, increase the number of neurons and extend up to its

Jacobean matrix is sufficiently well conditioned. The second phase use top-down

strategy with statistical Fisher test to refine the selection.

Generally, in constructive algorithms, initial network is simple. Thus, they are

computationally economical and they can train faster than large networks. However,

iteratively train few neurons, until the optimal solution is obtained is time

consuming. Not only that, but also as initially there are small number of neurons,

they are more sensitive to initial conditions and other training parameters [119]. So

that, there is high probability to trap with local minima.

54

Figure 3.5: Pyramid Algorithm

3.5 Evolutionary Methods

Liu et al. [1] proposed a method to approach the minimal hidden neurons based on

the estimation of the signal-to–noise-ratio figure (SNRF). In this study they suggest

that as SNRF can quantitatively measure the useful information in data that not

learned, without validation set, over-fitting problem automatically detected. By

using bench-mark data sets it shows that this method reduces the over-fitting

problem in the network.

By creating network with two hidden layers Asthana et al. [120] proposed a method

to recognize multi-script number on postcard. In this research they could achieve

more than 95% accuracy. Authors claim that the best accuracy can be obtained by

using the same number of neurons in both layers. Their work was tested in five

different popular Indian scripts namely Hindi, Urdu, Tamil, English and Telugu and

obtained 96% accuracy under ideal condition. Karsolia [121] shows that the

accuracy of the performance improves when the number of layers increases up to 3

and claims that by increasing the number of layers training time and complexity

increase many folds. Also, in his work, he has shown that by adding more hidden

neurons unnecessarily network leads to an over-fitting problem.

In these problems, evaluations have been done only with few data sets, which is not

sufficient to come with strong decisions. Author in [121], presented all the results

55

based on that three layer networks are the most suitable topologies without any

theoretical background.

3.6 Summary

The main objective of this chapter was to discuss the past to present developments

of the design of the artificial neural networks. There are number of approaches to

overcome the problem on the modelling of hidden layers in ANNs. Most of them

belong to either category of pruning, constructive or evolutionary method.

Various research models in each method were analyzed by explaining their

mechanism, strengths and drawbacks. Most of the existing approaches have been

used various techniques and achieved momentous solutions. However, there are

several limitations on existing approaches. Some of them cause to huge complex

computations. Several methods are time consuming and not based on a proper

theoretical basis. Hence, none of the method achieves the solution of the problem of

hidden layers in ANNs with good theoretical basis. Therefore, the problem on

modelling the hidden layer architecture still remains as a research challenge. The

next chapter will be discussed the theoretical background of modelling the hidden

layer architecture.

56

CHAPTER 4

A THEORETICAL BASIS FOR MODELING HIDDEN LAYERS

4.1 Introduction

The previous chapter discussed the current technologies of modelling the hidden

layer architecture of ANNs by highlighting their strengths and limitations. The

artificial neural networks are built to resemble the functional behavior of the human

brain. Of course, it is impossible to model all the functions of the human brain with

ANNs, due to its complexity and activities, some parts of the brain are still

mysterious. So, this research has been adopted few of the functions of the human

brain to model the hidden layer architecture and this chapter will discuss its

theoretical basis. Firstly it introduces the context of neuroplasticity. Then briefly

discuss on the functional behavior of human brain followed by the different types of

neuroplasticity and its various effects. Finally, it gives a concise mapping of the

human brain and the artificial neural networks.

4.2 The History of the Neuroplasticity

One of the most important and fascinating properties of the human brain is its

ability to adapt to the surrounding environment by changing its neural structure.

Until recently, scientists and the philosophers in the field of neuroscience worked

with the notion that the human brain is immutable and hard wired. It was postulated

that no new neurons are born and functions of the brain structures are fixed [122].

The recent studies show that, these assumptions are no longer correct and brain

functions change throughout one‘s life [123]. It is one of the important capabilities

of the human brain to organize its structure and functions itself in order to provide

an output for various inputs received from its surrounding environment [124]. This

change of brain neurons and its pathways to adapt to the surrounding environment is

called the neuroplasticity [125] and also referred as the brain plasticity [126], [127].

The word neuroplasticity is originated by two words ‗neuron‘ and ‗plastic‘. A

neuron stands for the nerve cell, which is formed by an axon and dendrites. Two

57

neurons are combined by a small space known as synapses (Figure 4.1). The term

plasticity refers the native property of nervous system that alters the structure of

neurons and synapses to maximize the brain functions and to adapt the changes of

environment. In other words plasticity means the development of the system to react

or adjust to both internal and external environmental situations under certain

conditions [128]. Hence, neuroplasticity stands for the ability of the brain to change

by altering its neurons and pathways to adjust to the surrounding environment.

The basic concept of neuroplasticity arose in the 19
th

 century. But it was not

emerged in the field and highly neglected by the scientists because the concept of

‗one function one location‘ was dominated in the field of neuroscience [129]. At

that time, it was assumed that the brain is static. It believed that if a part of brain

devoted for some function was damaged, then it cannot be recovered. However,

with the interest of neuroscientists, this concept emerged in the society. In 1887

Spanish pathologist and neuroscientist Santiago Ramon Cajol proposed that the

plasticity occurs in the nervous system and he published his important article, focus

on the nervous system of lower animals, “Estructura de los Centros Nerviosos de

las Aves”, (Structure of the Nervous Centers in Birds) based on the practical

analysis and claim that a nerve

Figure 4.1: Structure of a biological nerve cell

58

cell is an absolutely autonomous physiological canton and dendrites and axons are

end freely [130]. William James was the first to suggest theory of neuroplasticity in

1890, by his book ‗Principles of Phycology‘ [131]. In this book he has mentioned

about the training cerebral hemisphere and used both physical and psychic factors to

justify his idea.

For the first time, the term neuroplasticity was used by polish neuroscientist Jerzy

Konorski [132] at the middle of 20
th

 century. At this stage it was assumed that the

lower brain and neocortical areas are fixed after childhood and when people learn,

neuronal changes occur only in the hippocampus in the adult‘s brain [133].

However, new findings show that all the parts of brain are plastic and claim that a

large number of neurons are being added daily to the primate prefrontal and

temporal lobes.

4.3 Types of Neuroplasticity

The neuroplasticity theory says that thinking, learning, meditating and some of the

physical exercises such as dancing and playing musical instruments change the

brain‘s physical structure and the functional abilities. These activities cause the

plasticity of the human brain and which occurs in different ways. The main three

types of neuroplasticity are activity dependent plasticity, competitive plasticity, and

positive and negative plasticity.

4.3.1 Activity - dependent plasticity

The brain‘s ability of adapting to the environment yields to human specialized in

special target by continuous training and involving different activities. For example,

a child without born-talent in music is able to train to play a musical instrument by

regular training. A person, who suffers with a voice problem as a result of a

neurological disorder, will be able to talk by doing speech therapy exercises. In

other words, by training the lost functions of the nervous system can be retrieved.

This ability of the brain is known as activity-dependent plasticity. This concept

59

begins with American neuroscientist Paul Bach Y. Rita in late 1960s [134]. He

designed several models and conducted experiments to show evidence to prove the

hypotheses that the brain is capable of changing by different activities by including

a vision substitution system for blind people.

Activity-dependent plasticity plays a significant role in learning and ability of

understanding new things. It is responsible for helping to adapt an individual‘s

brain, according to the relative amount of usage and functioning.

4.3.2 Competitive plasticity

The plasticity of the brain is able to change its function constantly. Each part of the

brain has some specialized function. These functions change constantly when they

activate to achieve human needs. This is called competitive plasticity.

Neuroscientists‘ old saying ―use it or lose it‖ is more suitable to describe the brain‘s

functions than it is of any other part of the body. In other words, the human brain is

the way that because humans need to be able to process certain information, various

areas of the brain are specially adapted to processing different types of information.

But at the same time any area of the brain is capable of processing almost any type

of information. The idea, that we use only a small part of the brain, is simply wrong.

Any part of the brain that is not being used, will tend to be taken over for the

processing of other information. For example, blind people have a better sense of

other parts like ears, fingertips, etc. People who have lost their arms are able to

manage many of their works with legs which normally other cannot. Because, the

neurons of the other parts tend to take and maximize their functions of inputs of the

disable parts. This has been explained by famous Canadian psychiatrists and

psychoanalyst Norman Doidge as follows [135].

“The competitive nature of plasticity affects us all. There is an endless war of

nerves going on inside each of our brains. If we stop exercising our mental skills,

we do not just forget them: the brain map space for those skills is turned over to the

other skills we practice instead. If you ever ask yourself, 'How often must I practice

60

French, or guitar, or math to keep on top of it?' You are asking a question

about competitive plasticity. You are asking how frequently you must practice one

activity to make sure its brain map space is not lost to another.”

4.3.3 Positive and negative plasticity

There are many factors affect on the alternations in the brain, such as behavior,

environment, learning and mental and physical health conditions including injuries.

Like all other changes, the brain‘s structural and functional changes also work in

positive and negative ways on human beings. For example, if the individual‘s brain

functions and neural pathways and neurochemistry associated with experiencing in

pessimistic thoughts are strengthened then his neural pathways and neurochemistry

associated with optimistic thoughts are weakened. And the other side of this also

happens. Same goes to anxious versus relaxation, anger versus peacefulness and

depression versus happiness etc.

Positive neuroplasticity is the physiological ability of the brain to form and strength

dendritic connections, produce temporal changes, release neuromodulators and

increase cognitive reserve. Neuromodulators is the physiological process, which a

given neuron uses one or more neurotransmitters to regulate diverse populations

of neurons. Various physical activities, learning, social interactions and cognitive

remediation are some factors for positive plasticity.

In contrast, negative plasticity refers to the same physiological ability of the brain to

atrophy and weaken dendritic connections produce detrimental morphological

connection and decrease cognitive reserve. Negative plasticity may occur as the

result of poor health conditions, lack of sleep, bad food habits, depression and some

feeling like anxiety.

61

4.4 Structure of the Biological Neuron

A biological neuron has very specialized structure, as shown in the Figure 4.2,

which includes dendrites and axons. As many other cells it contains a cell body.

Two neurons connect to each other by synapses. More details on the neuronal

structure are discussed below.

Cell Body

Neural cell body, also known as ‗soma‘ is the spherical end of a neuron that

contains the nucleus. Cell body connects to the dendrites and axon. All the protein

for dendrites, axon and synaptic terminals are made in the cell body.

Axon

The lengthy fiber that transmits signals from cell body to terminals of the other

neurons, muscles and glands, is known as the axon. In some sensory neurons, such

as those for touch and warmth, axons transmit electrical impulse from the periphery

to the cell body. The length of axon varies from 0.1 millimeter to 1 meter, and

lengthy axons transmit the signal faster. Axons are covered by a fatty substance

called myelin, which protects the axon and help to transmit the speed the

transmission.

Dendrites

The dendrites are the treelike extension at beginning of neurons that play a key role

in transmitting signals. Dendrites receive chemical signals from the axon of other

cells and convert to electrical impulse and passes to the cell body or soma.

Generally, dendrites are short, highly branched and covered with synapses.

Synapses

Each neuron ends with terminal buttons and the gap between terminal buttons are

known as a synapse. Neural transmitters pass the electrical and chemical signals

through the synapses as depicts in the Figure 4.2 below. Neurotransmitters are

located in the vesicles in the terminal buttons. When an electrical signal reaches to

62

the terminal gap, it converts the electrical impulse to a chemical signal and passes

through the synapse to other nerve cells [136], [137] .

Figure 4.2: Structure of a neurons and a synapse

Synapses are the basic functional and structural units locate in between two neurons

to transmit the signals. A neuron that transmits the electrical signal towards the

synapse is called the pre-synaptic neuron and the neuron that conduct electrical

signal away from the synapse is the post-synaptic neuron. Probably a neuron may

have more than thousands of synaptic junctions and some neurons associate with the

brain contains more than 100,000 synaptic contacts. The most common synapses in

the human brain are chemical synapses. A chemical synapse converts a pre-synaptic

electrical signal in to chemical signal and then to a post-synaptic electrical signal

[138].

4.5 Neuronal Structure of the Human Brain

Neurons are the most important specialized cells in the nervous system that

transmits the signals throughout the body. They are known as information-

processing units in the brain, which responsible for receiving and transmitting

information. Neurons act in different ways in sensing external and internal stimuli,

63

in transmitting the information and controlling the muscle actions. In the human

brain, there are three main kinds of neurons.

1. Sensory neurons: These neurons are combined with receptors and convert

external stimuli in to internal chemical impulse.

2. Motor Neurons: Motor neurons control the functions of muscles. They are

responsible for all the activity such as movements, speech, etc.

3. Interneurons: In between sensory and motor neurons, interneurons are

introduced. Interneurons are found in small scale in the central nervous

system because they can find only the brain and the spinal cord but not in

the peripheral system.

At birth, the infant brain consists of more than 80 billion of neurons and each

neuron has about 7,500 connections. These neurons and synaptic connections grow

rapidly until 2 years of age. Generally, the synaptic connections of the 2-year-old

infant are double as that of an adult brain. While he grows the weaker neurons and

synapses removed from the brain while strengthening the remaining.

4.6 The Anatomy of the Human Brain

The biological nervous system composed with central nervous system (CNS) and

peripheral nervous system (PNS). The CNS consists of the brain and the spinal cord.

The PNS consists of nerves and ganglia outside the brain and the spinal code.

The brain is the most amazing and complex organ in the human body. It is generally

viewed as a black box that receives input signals from the environment and emits

the corresponding response. As shown in the Figure 4.3, the brain consists of three

regions called, cerebrum, cerebellum and brainstem. The most substantial part

among them is the cerebrum, which is split longitudinally into two large

hemispheres; the left hemisphere and the right hemisphere. The cerebrum has both

64

gray and white matter. The gray matter, which is the outermost layer of the

cerebrum, is called the cerebral cortex. The cerebral is divided into four lobes;

frontal, parietal, temporal and occipital. The neocortex is the largest part of the

cerebral cortex and many functions such as intelligence, memory, creativity,

emotions, touch, vision, hearing and speech, etc. are controlled by the neocortex.

The functions of neocortex will be discussed in the next section.

Figure 4.3: Structure of the brain

Under the cerebrum, cerebellum is located and it controls the movement of muscles,

posture and balance of the human body. The brain stem connects cerebrum and

cerebellum to the spinal cord. The three major parts of the brainstem are midbrain,

pons and medulla. Many automatic events such as breathing, digesting, heart rate,

waking and sleeping cycle are functioned by the brain stem. Usually, brain neurons

are five to six times of magnitudes slower than the silicon logic gates. The reaction

of silicon chips to an event is measured in nanoseconds while the reaction of brain

neuron is measured in milliseconds. However, the brain gets its amazing features as

it is made with massively interconnected neurons. It is shown that a typical brain

consists of ten billion neurons and sixty trillion of synaptic connections [139].

Hence, the brain has become an enormously efficient structure and the energetic

65

efficiency of the brain is measured as 10
-16

 joules per operation per second and that

is much greater than that of a modern computer.

In the brain anatomical organization can be found in both small scales and large

scale. There different functions take place at lower levels and higher level. Figure

4.4 shows the hierarchy of those levels given in Haykin [33] and references therein.

Figure 4.4: The structural organization of levels in the brain

In this structure, molecules are in the bottom level and synapses are depends on the

actions of molecular ions. Neural microcircuits are in the next level. Neural

Microcircuit refers the assembly of synapses organized into pattern of connectivity

between neurons within the region. They get many different forms depending on the

cellular and synaptic designs of microcircuits [140]. The size of microcircuit is

measured in micrometers and their speed is measured in milliseconds.

In the next level of complexity we have dendrite trees and neurons. The dendritic

subunits are formed by grouping the neural microunits with in the dendritic trees of

66

each neuron. The size of the whole neuron with several dendritic subunits is

approximately 100 [33].

At the next level, there are local circuits which are formed by neurons with similar

or different properties. Generally, size of a local circuit is about 1mm. Next we have

interregional circuits, which made up of columns, pathways and topography maps.

Interregional circuits involve in several regions located in all the sensory system of

the brain. Topographic maps act as an information transfer from thalamic way

stations to different areas of the brain [141]. Finally, at the top level of complexity

we find the central nervous system.

Figure 4.5: The hierarchy of the brain

4.7 Functions of the Neocortex

The neocortex, also referred as the isocortex is the largest part of the cerebral cortex

(Figure 4.5). In the human brain, this is the part that involves in higher order brain

functions such as cognition, rational thinking, planning and sensory perception etc.

It is the outermost part of the cerebral hemisphere with thickness of 2-4 mm. The

neocortex consists the ‗grey matter‘ of the brain or neuronal cell bodies and

unmyelinated fibers surrounding the ‗deeper white matter‘ in the cerebrum [142].

67

It is interesting to observe that the layered structure of the neocortex. Generally,

neocortex of the mammal‘s brain consists 6 layers and each layer has its own

function different from others as depicts in the Figure 4.6.

Layer I, the outermost layer which contains only few inhibitory cells is called the

molecular layer. Basically, this layer contains dendrites and axons of neurons from

deeper layers. These axons and dendrites spread horizontally in this layer. In this

layer, the intra-columnar axon are supposed to connect to the pyramidal cells [143].

Layer II contains both pyramidal cells and inhibitory cells. As this is one of the

most outer layers, it is called the external granular cell layer. This layer contains

dendrites whose cell bodies are in layers V and VI and the main function of these

cells is receiving the input signals from other layers.

In layer III majority of the cells are pyramidal cell. However, it contains all most all

the other variety of cells which can find in the other areas of neocortex. Since the

majority of the cells of this layer are pyramidal, this layer is called the external

pyramidal cell layer. This layer cells are responsible to receive signals from other

cortical regions and transmit them to other cortical columns.

Layer IV, also known as internal granule layer, is composed with granule cells and

this layer is located in the deeper in the neocortex. This layer contains some

inhibitory cells and small excitatory cells known as spiny stellate cells. Layer IV is

the main layer that receives signals coming from thalamus. The granule cells receive

sensory input and transmit them to adjacent neocortex column.

Layer V composed with larger pyramidal cells and it contains only few inhibitory

cells. Some pyramidal cells of this layer have long axons which transmit signals to

basal ganglia, brain stem, and spinal cord [142]. The basal ganglia refer the group of

subcortical neurons which are strongly interconnected with several areas of the

68

brain including cerebral cortex, thalamus, and brainstem. Basal ganglia are located

at the base of forehead. Cells in layer V mainly involve in motor movements.

Layer VI is called the multiform layer as it contains many different cells in white

matter. The structure of this function is not homogeneous. This layer also contains

some inhibitory cells called Martinotti cells. Martinotti cells have long axonal

outputs which project signal across all the layers of neocortex. Most of the cells in

this layer are large pyramidal cells which project their axons to the thalamus. Other

than layer IV, layer VI is the next main target of inputs of thalamus to the

neocortex. Thus, the main function of layer VI neurons are receive and integrate the

signal from brain stem and transmit them to the thalamus [144].

The six-layered structure of the neocortex is unique to the mammalian brain

structure. Other than mammalians only fish and reptiles have neocortex and they

have only three layered structure.

69

Figure 4.6: The layered structure of the neocortex

4.8 Classification of Effect of Neuroplasticity

The neuroplasticity is the general term to describe the changes of the brain. For

further analysis, it is distinguished into two broad categories; structural

neuroplasticity and functional neuroplasticity.

4.8.1 Structural changes in Human brain

The development of the human brain begins in the embryonic state and continue

throughout the lifespan [145]. However, most of the dynamic changes of the brain

occur in the early childhood, and it assumes that the brain reaches to 80% its weight

during the first two years. The functional and structural changes in the human brain

can be occurred due to the various types of behavior of neurons such as

70

neurogenesis, neural migration, neural cell death, synaptogenesis and synaptic

pruning [146], [147].

4.8.1.1 Neurogenesis

Neurogenesis is the creating new neurons from the neural stem. There are number

of behavioral and environmental factors affecting in neurogenesis and it caused to

change of synapses and neural pathways. Usually, neurogenesis takes place in two

regions of the brain called the sub ventricular zone (SVZ) and the hippocampus.

The hippocampus (Figure 4.7), where neurogenesis occurs throughout the life span

of the brain plays a major role in learning thinking, and problem solving. Reducing

this part has been found to have some neuro-degenerative diseases such as

Parkinson‘s and cognitive disorders like depression, amnesia and dementia. The

newly born cells in the SVZ form a lining of the lateral ventricles. The neurogenesis

takes place in hippocampus forms the ‗denate gyrus‘ which is the part of the

hippocampus responsible for memories of events [148], [149]. The neurogenesis

happens from the embryonic period to adulthood and it largely occurs in the

developing brain. The recent studies show that there are evidences in neurogenesis

happen in the adult brain, but it is limited to some parts of the brain. Joseph Altman

[150] shows in his studies that adult neurogenesis takes place only in the

hippocampus

Figure 4.7: Hippocampus area of the brain

71

4.8.1.2 Neural Migration

The position of neurons in the central nerve system plays a key role in determining

their functions. Most of the neurons in the human brain are not born in the same

place as they are finally located. Neurons are generated by one part of the brain and

sometimes travel long distances along complicated routes to reach their target

locations. Especially, neurons in the peripheral nervous system come to their final

location after having a long journey from the embryonic position. However, neurons

in the central nervous system limit their movement to the neural tube. This process

of moving neurons from its birth place to another location is called the neural

migration. Due to neural migration, different classes of neurons locate together and

hence, they can interact appropriately [151]. Although majority of neuronal

migration takes place in all stages of embryonic development, few neurons continue

the process until adulthood [152], [153].

The two major modes of neural migration are radial migration and tangential

migration. The neurons have radial migration, originate in the ventricular zone of

the pallium (cortex) and form ‗glutamatergic pyramidal neurons‘. The tangentially

migrating neurons that originate in the ventricular subpallium form GABA (

aminobutyric acid).

4.8.1.3 Neural Cell Death

At the developing period of the brain, about one and half time of the neurons that in

the adult brain are created. The process of destroying such excess of neurons is

known as neural cell death. Neuroscientists have been identified three different

ways of neural cell death. Firstly, it occurs during the nerves system developing

period. That is, during the embryonic and early postnatal period. A large percentage

of neurons, approximately 50% in each region of nervous system die in this stage.

The timing of the process may vary from region to region. But this process is

normal and known as ‗apoptosis.‘ The second way of neural cell death happens as

the result of various neurodegenerative disorders like Alzheimer‘s disease. In this

stage significant number of cells die, but the process continues several years. Hence,

72

the daily death rate of neurons is infinitesimal. Finally, cell death appears after

hypoxia that accompanies strokes. In this case large number of neurons dies within

short period and hence, it leads to very abnormal behavior in central nervous system

[20].

4.8.2 Synaptic plasticity

Synaptic plasticity is the ability of changing activities of the synapses over time

with the effect of the synaptic transmission. That is, enhances or depresses the

synaptic transmission by activity [154]. Synaptic plasticity plays a key role in the

early developing period. Generally, there are two types of synaptic plasticity called

intrinsic and extrinsic. Intrinsic refers the changes of the strength of synapses due to

its own activities while extrinsic is the changes of activities due the activity of

others behavior. The changes of synapses may occur as short term or long term. The

short-term process lasts from milliseconds to minutes. The long term synaptic

plasticity, which is known as long term potentiation (LTP) or long-term depression

(LTD), lasting hours or days. Synaptic plasticity can occur in two ways: creating

new synapses (synaptogenesis) and removing existing synapses (synaptic pruning),

which are described below.

4.8.2.1 Synaptogenesis and Synaptic Pruning

The elimination of unnecessary synapses from the central nervous system is known

as synaptic pruning. Although this process lasts through the life span, majority of

the synapses eliminate from the human brain between the child birth and the

puberty. At the birth, human brain consists of more than 80 billion of neurons.

During the first two years after child‘s birth, size of the brain grows significantly. In

this period there is no much neurogenesis take place. The growth of the brain occurs

as the result of creation of new synapses and myelination of nervous fiber.

Myelination refers the forming white substance surrounding the axon. Creation of

new synapses is called the synaptogenesis.

73

At the child‘s birth, a neuron consists of approximately 2,500 connections. In two

years it becomes about 15,000 and this is far more than the functionality needed.

When synaptogenesis reaches to a peak level it starts to prune weak and

unnecessary synapses from the central nervous system as describe in the Figure 4.8

[155]. Pruning occurs due to environmental factors and learning. While infant is

learning, weak synapses are eliminating by strengthening the functions of remaining

ones. Pruning process lasts until the death of healthy persons, but significantly

occurs until the adolescence. At the end of this process brain contains about 50%

synapses that were in a two-year-old child.

4.8.3 Functional neuroplasticity

The changes happen in the brain due to learning and memory is called the functional

neuroplasticity. The Magnetic Resonance Imaging (MRI) based structural imaging

techniques evidence that learning and memory yields both short term and long-term

changes in synapses. While learning and memory, as a result of structural

adjustments and intracellular biomechanical process, permanent changes appear in

synaptic relationships between neurons [133].

Figure 4.8: Changes of synapses

74

4.9 Positive and Negative Outcomes of Neuroplasticity

Now it is clear that the brain continues its changes throughout one‘s lifespan. These

changes can happen in both positive and negative directions to respond to intrinsic

and extrinsic influences [156]. The majority of the remodeling of the human brain

takes place from infant level to adolescence. But this process continues until death.

In previous sections we discussed how neuroplasticity occurred, types of different

plasticity of brain and the factors which promote this plasticity.

The structure and the functions of the brain depend on several parameters like

activity, education, environment, food habits, etc. So that, the remodeling of brain

shows both positive and negative outcomes that depend on the above factors.

4.9.1 Positive outcomes of neuroplasticity

Positive neuroplasticity improves the brain and body health. Also, it enhances the

capacity of the creativity and the memory. It has been shown that by improving

synaptic plasticity, new skills can be developed. Physical exercises and meditation

cause for better cognition and maximize the functions of the aging brain [157].

When a child has some disorder in a particular function such as hearing, the brain

removes those neuron and axons which does not serve him and replaced the new

neurons which are able to develop new skills. This gives a child a second chance to

develop his skills.

In addition, more efficient communication between sensory and motor pathways,

slowing down pathological processes, promoting recovery of sensory losses and

improved motor control are some positive outcomes of the neuroplasticity.

4.9.2 Negative outcomes of neuroplasticity

Researchers show that, in the infancy level the size and the weight of the brain

increase very rapidly and the significant factor for this incensement is the growth of

synapses (synaptogenesis) between neurons (gray matter) and myelination of nerve

75

fibers (white matter) [158]. This process continues until adolescence and after

adolescence, synaptic pruning begins. Synaptic pruning can be described as a

learning mechanism and it is largely happened due to the environmental influences

[159]. The neurologists explain that in the human brain memories are formed at

structures that are known by dendritic spines which communicate other brain cells

through synapses. This process continues until the end of someone‘s life.

Nevertheless, about half of the brain connection removes after puberty.

However, synaptic pruning always does not yield only positive outcomes. The loss

of extra neurons and pathways may cause difficulties in recovering from a brain

injury. Eliminating excess neurons limit the ability to develop new pathways to

bypass the damaged neurons. Moreover, under-pruning of synapses slows down the

functions of the human brain. For instance, it believes that children and adolescents

get mental disorder such as autism due to having excess synapses in the brain.

Because synapses are the end point of neurons and neurons connect and

communicate with each other through synapses, excessive synapses may maximize

the effects of theses brain functions. Thus, having synapses more than necessary can

cause some symptoms such as oversensitivity to noise and social experiences. In

addition, it may cause to the mental disorder known as ‗epileptic seizures‘ due the

more electrical signals being transmitted through neurons [160]. Guomet Tang, a

professor in neurology shows how neurons appear autistic brain and a normal brain

in the following Figure 4.9.

Schizophrenia is another severe disorder that affects to person‘s social behavior,

thinking ability and feelings. Neurologists show that this happens due to mal-

synaptic pruning. The schizophrenia occurs in the late adolescence or early

adulthood [161]. Electron microscopy (EM) studies indicate that healthy brain of a

human shows cortical synaptic density reaches a maximum at 2 – 4 years of age

[162] and then starts to reduce excess neuronal synapses and this mainly happens

during the adolescence. However, some studies show that synaptic elimination

continues [163] throughout the third decay of the life before stabilization of the

76

synaptic density in adult brain. So that, the neurologists strongly believe that growth

of abnormal synaptic pruning towards severe mental disorders at the early adulthood

[164] [165].

In addition, the other mental disorders such as decline in brain function, altered

motor control, impaired performance of activities of daily living and amplified

perception of pain are some effects of the inappropriate synaptic pruning.

Figure 4.9: Neurons of autistic (left) and normal brains (right)

4.10 Artificial Neural Networks and Human Brain

Human brain, which is having the phenomenal power, is the most complex organ in

the human body. The extraordinary power of human brain is far beyond than that of

any supercomputer today. The mechanism of the human brain is absolutely different

from the conventional ‗Von Neumann‘ architectural computer. A Von Neumann

computer works step by step sequentially through an algorithm [23].

The brain is a massively parallel and highly complex information-processing

structure. Among a big crowd in a town we can recognize a friend, or identified a

voice in a noisy station. Is there any machine to model such complex behavior? The

artificial neural networks are developed to mimic the some such fascinating features

of the human brain.

77

In the human brain, dendrites, which project from the cell body receive signals and

pass them to the cell body of another neuron. When accumulated signals in cell

body reach to a certain threshold limit, the neuron fires and electrical impulses are

passed through the axon. At the end, each axon is branched into number of synaptic

knobs, also known as axon terminals. With synapses it connects to other

neighboring neurons and the signal passes to those adjacent neurons through the

synapses. Some synapses get positive outcomes from dendrites and they influence

neurons to fire while some get negative outcomes and they weaken the signals.

Approximately, a single neuron connects to 10
5
 synapses and it believes that the

human brain contains about 10
16

 synaptic connections.

Artificial neural networks are created to model this functional behavior of the

human brain by directly transferring the concept of neurons. The neurons or basic

elements are represented by nodes or artificially designed neurons. The axons are

corresponded to the connections between neurons. Dendrites are represented by

activation functions. The synaptic weights of artificial neural networks represent the

synapses of central nervous system. The concept of training of artificial neural

networks came from the psychologist Donald O. Hebbs famous theory ―When an

axon of cell A is near enough to excite cell B or repeatedly or persistently takes part

in firing it, some growth process or metabolic change takes place in one or both

cells such that A’s efficiency, as one of the cells firing B, is increased‖ [22].

However, it is still a challenge to model human brain artificially. The Biological

neurons and neuronal activities are far more complex than artificially created

neurons. Generally, neurons in human brain do not simply sum the weighted inputs

and the dendritic mechanisms in biological systems are much more elaborate. Also,

real neurons do not stay on until the inputs change and the outputs may encode

information using complex pulse arrangements.

78

4.11 Summary

This chapter briefly discussed the theoretical basis towards the modelling of hidden

layers in ANNs. The ANNs are created by copying the functional behavior of the

human brain. The human brain is an immensely parallel and highly complex

information-processing dynamic structure. Changes of the human brain occur

due the neuroplasticity and synaptic plasticity. These changes take place mainly in

the embryonic period and early childhood but extend throughout the life-

span. There are positive and negative outcomes of such changes,

especially improper synaptic pruning can cause to some severe mental disorders like

autism and Schizophrenia. In the next chapter we will discuss the hypothesis and

theories that we applied in modeling the hidden layer architecture.

79

CHAPTER 5

A NOVEL APPROACH TO MODELLING HIDDEN LAYERS

5.1 Introduction

The previous chapter discussed the theoretical basis of achieving the hidden layer

architectures in ANN. The chapter 3 was discussed the different approaches on

modeling the hidden layer architectures. It showed that the determining the hidden

layer architecture in artificial networks is a great challenge. Even though there are

several approaches, these methods have various shortcomings. Hence, still the

modelling of hidden layers in ANNs remains as an unsolved problem. This chapter

discusses the approach on modelling the hidden layers by applying a Peak Search

algorithm and Delta Value of hidden layers (PSDV approach) by highlighting the

hypothesis. Additionally, it includes inputs, outputs and the various steps of the

approach.

5.2 The Hypothesis

This research postulates that ‗any given large ANN can be reduced to a smaller-

sized ANN by trimming hidden layers and neurons in hidden layers such that the

resultant network shows same or better performance‘.

This approach is inspired by the fact that ‗the nature is always overestimated.‘

Naturally, nature consists more than sufficient elements. For instance, animals have

two eyes, two ears, etc. Not only that, by also they bear billions of neurons and

trillions of connections on their brain. However, if they lose part of these, still their

lives would be survived, because when some neurons are damaged, others maximize

the functions to compensate for the damaged neurons. In the same line it assumes

that a large artificial neural network can make smaller by eliminating neurons and

connection which are not very important.

80

5.3 Inputs

The input of the process will be a large network (network with hidden layers and

 hidden neurons) trained by the backpropagation algorithm. That is this input

network consists of hidden neurons distributed among hidden layers. The

hidden layer contains hidden neurons, where 1 2

Then

 5 1

The distribution of neurons among the hidden layers has done in 3 different ways as

follows.

 ‗Equal‘ hidden neurons:

Each layer has same number of neurons. That is

 ‗Ascending‘ hidden neurons

Hidden neurons in each layer arrange in the ascending order.

 ‗Arbitrary‘ hidden neurons

Each layer contains an arbitrarily chosen number and there is no any

special pattern among

At the first stage, process initializes with this input and determines the number of

hidden layers of the highest generalized network. Then the resultant network uses

as the input for the second phase. In this stage, it identifies neurons which do not

contribute in error decay process and eliminate them from the network.

5.4 Outputs

In the first stage the output is the number of hidden layers in the network which

gives the highest generalization. The resultant network has fewer number of hidden

layers and hidden neurons comparing with the original one. But still it may have

some unnecessary neurons. So that the second phase removes all unnecessary

neurons. Thus, the final output of the process is a fully connected network with

81

 hidden layers whose total number of neurons is , where

 1 2

5.5 Process of the New Method

There are two phases in the process. At the first phase network cut down all the

excess hidden layers to obtain the minimal number of hidden layers which gives the

best generalization. In the second phase it eliminates all the weak neurons that do

not contribute to minimize the output error. The whole process is described below.

5.5.1 The Peak Search Algorithm

The process of modeling the hidden layers starts with a large network, trained by

backpropagation algorithm. Nonetheless, if there is no such trained network for the

given data set, it is able to create and train a network with arbitrary large number of

hidden layers and hidden neurons . No matter how poor generalization it

shows.

The generalization of the network with h hidden layers is defined as

× 1 5 2

By the experiments done previously, It was observed that by adding layers,

generalization power can be improved up to a certain level and then decreases or

retain at the maximum level [32] as shown in the following Figure 5.1, where H is

the number of hidden layers in the initial network.

Figure 5.1: Change of the generalization with the number of hidden layers

No. of Hidden
Layers

G
en

er
al

iz
at

io
n

n

No. of Hidden
Layers

G
en

er
al

iz
at

io
n

1 H 1 H

82

However, this graph is always not expected to obtain the peak at the middle of the

given range. There is a possibility to have the optimum solution for a single hidden

layer network or the initially considered architecture with a large number of hidden

layers (say H) as shown in the Figure 5.2(a) and Figure 5.2(b) respectively.

The initial network contains number of hidden layers and total number of

hidden neurons. The generalization of initial network is known. The proposed

algorithm searches the number of hidden layers (say) in the architecture which

shows the best generalization. On the other words the main objective of this

algorithm is to determine an integer j such that [1] and

 { }

.

Figure 5.2: Change of generalization with hidden layers

The concept was influenced by the algorithms on binary search (bi-search) [166]

and peak search [167]. However, bi-search algorithms are used to approach target

value in a sorted array. Most of the existing peak search algorithms reach to the

peak level by considering the local maxima or by comparing the maximum value in

three consecutive numbers.

No. of Hidden
Layers

G
en

er
al

iz
at

io
n

No. of Hidden
Layers

G
en

er
al

iz
at

io
n

(a): A single hidden layer network
gives the best generalization

(b): The initial network with H
hidden layers gives the best
generalization

1 H 1 H

83

The proposed method in this research, reaches to the target by comparing the

generalization of the middle value with the generalization of two end points of the

interval. According to the inequality holds, lower or upper part of the interval

eliminates and repeats the procedure until it reaches to the target value.

The algorithm is based on the assumption that while adding hidden layers to the

network, generalization of any data set is increased up to a peak level and then it

remains at that level or decreases. The main objective of this algorithm is to

determine an integer value j between 1 and , where is the number of hidden

layers in the network which gives this peak value of generalization. That is, the

algorithm searches such that [1] and { }.

Initially, consider the interval with left end 1 and right end If the single

hidden layer network, which is the simplest architecture, shows generalization

100%, then it is considered as the required network. i.e if 1 , the solution for

the given problem is the network with one hidden layer and hidden neurons.

Otherwise, compute the generalization of middle value of the interval [], .

As the number of hidden layers is a positive integer and always we prefer to obtain

the minimal architecture, is chosen as

 [

2
] 5 3

where [] denotes the integer part of .

Then the process continues by comparing with the values of generalization of

two end points and .

The possibilities of having inequalities among and are as follows.

Case I:

 This can happen either or . In both the

instances peak lies in between L and m as depicts in the Figure 5.3. Then it

84

removes the interval]. So that the new right end of the interval is .

Hence, replace by and continue the process.

Figure 5.3: Graphs for

Case II:

This is opposite of the case I. Hence, peak lies in the interval [] and then

interval [will be removed. As shown in the Figure 5.4, this case

happens when and . Here, replace by

and continue the process.

Figure 5.4: Graphs for

𝒈𝑳 𝒈𝒎 𝒈𝑹 𝒈𝑳 𝒈𝒎 𝒈𝑹

𝒈𝑳 𝒈𝒎 𝒈𝑹 𝒈𝑳 𝒈𝒎 𝒈𝑹

85

Case III:

This is the worst scenario. This case could be occurred at four instances.

Such as

 , , and .

In all these cases, the peak can find anywhere in the interval []. Then to

find the peak value we compute and as follows and continue the

process.

 [

2
] [

2
]

Then one of the following 6 cases can be occurred.

(i) When

 .

i.e.
 {

 } . In this case peak lies in the

left and right intervals of . i.e in the interval [] or [] as

illustrated in the following Figure 5.5. So that the peak value can be

found in anywhere in the interval [] i. e. peak is in the interval

which contains . Therefore, the interval] can be removed

and is replaced by . Now becomes the middle point of the

new interval and it agrees the condition of Case III: .

Figure 5.5: Graphs when
 is the maximum

L R 𝑚 𝑚1 𝑚2 L R 𝑚 𝑚1 𝑚2

No. of Hidden Layers

G
en

er
al

iz
at

io
n

No. of Hidden Layers

G
en

er
al

iz
at

io
n

86

(ii) When

 .

i.e.
 {

 }. As shown in the following

Figure 5.6, this is the opposite of the above (i). Hence, the peak lies

any interval which contains . By removing the interval [and

by replacing by and the middle point by and it can

convert to the Case III.

Figure 5.6: Graphs when
 is the maximum

(iii) When

i.e {

 }. Similar to above (i) and (ii) In

this case peak lies in an interval including . i.e in the interval

[] or [] (Figure 5.7). Hence, peak lies anywhere in

[]. Then replace by and by .

Figure 5.7: Graphs when is the maximum

L R 𝑚 𝑚1 𝑚2

No. of Hidden Layers

G
en

er
al

iz
at

io
n

L R 𝑚 𝑚1 𝑚2

No. of Hidden Layers

G
en

er
al

iz
at

io
n

L R 𝑚 𝑚1 𝑚2

No. of Hidden Layers

G
en

er
al

iz
at

io
n

L R 𝑚 𝑚1 𝑚2

No. of Hidden Layers

G
en

er
al

iz
at

io
n

87

(iv) When

i.e.
 {

 }. As discussed in the

previous cases, here peak lies in any interval contains and . i.e

in the one of the intervals [] [] or []. In otherwords

peak lies in anywhere in the interval []. Hence, remove the

interval] and continue the procedure by replacing by .

(v) When

i.e.
 {

 }. This is opposite of the

above (iv). In this case peak lies in the interval []. Hence,

remove [and continue by replace L by .

(vi) When

In this case it is not possible to determine the peak. Hence, it needs

to check the generalization of middle point of each of the interval

[] [] [] and [].

The process stops when 1 or are consecutive numbers. Then the

number of hidden layers in the architecture is

 { { }} 5 4

or

 { { }} 5 5

The following Figure 5.8 is a flow diagram to describe the procedure of obtaining

the number of hidden layers in the most appropriate network and Figure 5.9

describes the peak search algorithm.

88

Figure 5.8: Flow diagram for peak search algorithm

Case

I?

No

Start

𝐿 1

𝑅 𝐻

Yes

𝑚 [
𝐿 𝑅

2
]

Yes

 𝑔 1 ?

 𝑅 𝐿 1?

Target = 1

No

Yes

No

Case

II?

Yes
𝐿 𝑚

𝑚 [
𝐿 𝑚

2
]

𝑚 [
𝑚 𝑅

2
]

Replace L and R

as per the Case

III

𝑅 𝑚

Target ={𝑗;𝑔𝑗 max(𝑔𝐿 𝑔𝑚𝑔𝑅 }

No

89

Figure 5.9: The peak search algorithm

𝑚 [
𝐿 𝑅

2
]

𝑚1 [
𝐿 𝑚

2
] 𝑚2 [

𝑚 𝑅

2
]

𝑔𝑗 {𝑔𝐿 𝑔𝑚 𝑔𝑅}

The Peak Search Algorithm

Consider initial network with 𝐻 hidden layers and {𝑛 𝑛 𝑛𝐻} hidden neurons

Start

Input : 𝐻 𝑔𝐻

Output : j such that 𝑔𝑗 𝑔𝑢 𝑢 [1 𝐻]

Step 1

Compute 𝑔

If 𝑔 1, then 𝑗 1 {The required architecture has only one hidden layer}

 Else 𝐿 1 𝑅 𝐻

Step 2

While 𝑅 𝐿 1, compute the middle value 𝑚 of 𝐿 and 𝑅

Step 3

Train the network with 𝑚 hidden layer and {𝑛 𝑛 𝑛𝑚} hidden neurons

Compute 𝑔𝑚

If 𝑔𝐿 𝑔𝑚 𝑔𝑅, replace R by m and repeat Step 2 {Peak lies in the interval [L, m]}

 Else if 𝑔𝐿 𝑔𝑚 𝑔𝑅 , replace L by and repeat Step 2{Peak lies in the interval [m, R]}

 Else (𝑔𝐿 𝑔𝑚 𝑔𝑅) compute middle values of [𝐿 𝑚] and [𝑚 𝑅]

Replace L by 𝑚1 and R by 𝑚2 and repeat the Step 2

Step 4

Repeat Step 2 and Step 3 until 𝐿 𝑚 𝑅 are consecutive numbers

End

 The number of layer with maximum generalization is j where

90

5.5.2 Performance of the algorithm

The proposed algorithm is design to search number corresponds to the maximum

generalization based on the concept that while increasing the number of hidden

layers of an ANN, generalization is increasing and reaches to a peak level and then

decreasing to a lower level. To analyses the performance of the algorithm, it needs

to compute the number of iterations that takes to reach the target.

The process starts with the middle element [
 1

2⁄] of the array [1 2],

where [] denotes the integer part of the number . The procedure is represented by

a binary comparison tree shown in the Figure 5.10. The lower half of the array

represents the left part of middle element and upper part represents the right side

and extends the tree in similar fashion. Iteration continues selecting the middle

elements of the range where maximum generalization occurred. The process

terminates when there is no integer between two values which provide the highest

generalization. The worst case arises when tree contains maximum branches. The

number of iterations of the worst case is 1, which happens only if all the

networks with layers 1 show the same performance.

Figure 5.10: Binary comparison tree

91

5.5.3 Upper limit for the hidden Layers

To avoid getting huge values for output error, normalized weights are chosen for

synaptic weights. So that we can assume the input of any neuron in the output layer

lie in the interval [1 1] . Normally, the activation function chosen output layer is

the linear function . Therefore, by the equation 2 23, the delta value of any

output neuron equals to the error between target output and actual output. In

addition, the Figure 5.11 shows that by applying the log sigmoid function, output of

each neuron converges to a value in between 0 and 1. If the activation function is

tan sigmoid, then this value lies between -1 and +1. The following Figure 5.12

illustrates that the derivative of log sigmoid is always less than 0.25 and that of tan

sigmoid is less than 1.

Now consider the delta values of hidden layers given by the equation 2 26

 (
)∑

Then, dividing the equation by
 , the ratio of

 to
 can be obtain as

 (

)∑

 5 6

The experimental results show that delta values in a one particular layer is almost

same [32].

Therefore,

 (
)∑

 5 7

But as weights are normalized

 ∑

 1 5 8

Hence, the ratio of the delta value of any particular neuron in layer h to layer h + 1

approximately equals to the derivative of the activation function. That is

 (
) 5 9

92

Since, maximum values of derivatives of log sigmoid and tan sigmoid functions are

0.25 and 1.

Therefore,

 1

Figure 5.11: Sigmoid functions

Figure 5.12: Sketch of the derivatives of sigmoid functions

93

Thus, delta values of each layer is less than that of the previous layer. Hence, when

there are many layers, delta values of initial layers become infinitesimal. So that, the

correction of synaptic weights are negligible and hence, there is no update of

connection weights in the very first layers. Therefore, when network consists of

large number of hidden layers, always it shows the same performance as weights are

not updating. So that when an integer is some large value, all the network

architectues contain k or more than k hidden layers shows the same generalization.

In addition, suppose that there is a large number of hidden layers, which repeatedly

applies the same sigmoid function (log sigmoid or tan sigmoid).

Now consider the two sequences

 and () 1 2

Then

 66

and

The Figure 5.13 shows how the sequence converges to its limit for four different

initial values 0.0, 2.7, 0.5 and 1.0. Generally, the sequence

1 2 reaches its limit 0.66 by 7 or 8 iterations and () takes more

time. Therefore, when the activation function is log sigmoid, ANN architecture with

8 or more layers supposed to give the same output and thus, the performance of any

large network is same as the network with 8 layers.

So that, this process can start with a trained network with any number of hidden

layers. However, when there are only raw data, the process can start by creating a

network with H(>8) hidden layers, hidden neurons.

94

Figure 5.13: for different initial values

5.5.4 Determining number of hidden neurons

The traditional method of training a feed-forward artificial neural network is

backpropagation algorithm which can be used successfully in many real world

problems. However, as many other training algorithms, it shows some weaknesses

such as the problem of local minima. When it reaches to local minima, network is

unable to learn and hence, it is a serious barrier for successful training of a network

to obtain the desired task.

This research approaches to the minimal architecture by modifying the

backpropagation algorithm. The previous section 5.5.1 discussed how to determine

the number of hidden layers by starting with an over-sized network. However, still

the network may contain some unnecessary neurons. At this stage the network is

just like the human brain which is pruned inappropriately. Thus, it recognizes the

unimportant neurons while training the network and remove them as synaptic

pruning occurs in the human brain. That is in this stage it identifies the neuron

which do not contribute to the error decay process and eliminate them from the

95

network. So that, a new algorithm is proposed to remove unnecessary neurons from

the network and fine tune by merging the possible weights to achieve the desired

task.

The backpropagation algorithm is the most well-known and widespreaded algorithm

among many numerous algorithms that have been proposed to train artificial neural

networks. The basic idea behind the train a network by backpropagation algorithm

is to obtain weight matrices in order to minimize the error of th
 training cycle

 , which is given by the following equation.

1

2
∑()

 5 1

where and are the target and actual outputs of the th
 neuron of the output layer.

 is the number of neurons in the output layer.

For number of input/output training patterns error becomes

1

2
∑∑()

 5 11

The proposed algorithm prunes neurons as much as possible from the hidden layers

of over-sized network while maintaining the same error rate as initially given

network. Pruning is done by using the delta values of hidden layers. If the network

contains hidden layers, the delta value of the th
 neuron of the hidden layer (the

last hidden layer) is given by

 ∑

 5 12

where
 is the pre-defined activation function of the th

 hidden layer. is the

connection weight of the neurons of the last hidden layer and neuron of the

output layer. is the delta value of k
th

 neuron in the output layer, which is defined

by

 5 13

96

where,
 is the activation function defined for output layer. and are the

desired and actual outputs respectively.

This value is used to update the connection weights as follows.

 1

 5 14

where is the learning rate.

Then the error 1 of the training cycle 1 is calculated by using updated

weights obtained from the equation 5 14 . The intension of this algorithm is to

update weights to reduce the output error at the each training cycle. However, the

above equation implies that, zero delta value means there is no update of the

particular weight. It implies that the hidden neurons with zero delta values do not

contribute to decrease the error. So that the hidden neurons with zero delta values

are identified as less salience neurons and eliminate them from the ANN

architecture does not affect to the performance of the network.

Empirical results show that very often, there is a correlation between summation of

delta values of hidden layers and the output error which can be positive or negative

[168]. Thus, we use this correlation to identify the removable neurons. Let this

correlation denote by , where,

 (∑

) 5 15

Therefore, to obtain a more precise network, the correlation defined in the above

equation is used. If the correlation is positive, sum of the delta can be reduced by

removing neurons with positive delta values. But according the equation 5 14

neurons with zero delta values are recognized as unimportant neurons. Therefore,

when is positive, the minimal architecture obtained by removing neurons with

positive infinitesimal delta values. On the other hand, when the correlation is

negative, neurons with negative delta values, which are very close to zero, will be

removed to obtain the desired architecture.

97

The pruning has the same meaning of synaptic pruning in neuroscience. It facilitates

changes the neural configuration by removing weak neurons and synapses while

strengthening the remaining. In synaptic pruning while pruning the weak neurons

from the nervous system it merges the similar neurons to strengthen their functions.

In same manner to enhance the accuracy of the network, removing weights are

merged with the similar weights.

5.5.5 Merge the similar neurons

The whole process of pruning neurons is inspired by the concepts of neuroplasticity

and synaptic pruning. While pruning unnecessary neurons from the human brain, it

increases the functions of the remaining ones. In similar, this process maximizes the

weights of synaptic connection while removing the unimportant neurons. Although,

the particular neuron does not contribute to reduce the output error, the contribution

of the input and output weights attached to that neuron are not negligible. However,

while removing the desired neuron, all its input and output connections also

removed from the network. Thus, the weights of the removing connections will be

merged with the similar weights to obtain more efficient network. The ‗similar

weights‘ are the weight vectors with the same orientation.

Let th
 neuron of hidden layer be identified as a removable neuron. Suppose

 () ×
 and () ×

 are the input and output vectors of layer

respectively.

Let [

] and [].

Where are the row vectors of the input weight matrix and

 are column vectors of the output matrix of the layer . When

removing th
 neuron, the row vector [] and the column vector

 []
 will be removed. While removing, they merge with

similar vectors as described below.

98

When two input vectors and are similar, then

 〈

‖ ‖

‖ ‖
〉 1 5 16

where denotes the scalar product of two vectors and .

Thus, if neuron j in layer is identified as the removable neuron, and and

 are the similar vectors to and respectively, then merges with

and merges with .

5.5.6 The new algorithm

The process starts with the ANN structure obtained by the PSA. Still it may contain

some unimportant neurons. Let the number of hidden layer be h and the total

number of hidden neurons is . Let the number of different input/output vectors in

training set be p. Assume the number of hidden neurons in layer is .

Step 1

Initialize random normalized weights.

Train the network once by backpropagation algorithm.

Step 2:

Compute the correlation between summation of delta values of each hidden

layer and output layer.

 (∑

)

Identify the removable nodes according to the value of and remove

them from the network.

Step 3:

Merge the weights with similar weight vectors

Step 4:

Train the network for fine tuning until the desired output.

99

The state diagram of removing unimportant neurons from the architecture is

depicted in the Figure 5.14. Once the process satisfies the stopping criterion, that is

when the error defined by the equation 2 11 becomes less than the given value, the

network stops training.

Figure 5.14: Illustration of removing unimportant neurons

100

5.6 Summary

This chapter focused on the methodology on the designing the optimal solution of

problem of hidden layer architecture in artificial neural networks. The process of

modelling the hidden layer architecture is based on the hypothesis that any large

network will be able to reduce a small sized one by trimming its layers and neurons

by managing the same or better performance of the original network. The solution

of optimal architecture consists of two main stages. First it determines the number

of layers by cutting down the inappropriate layers from a large-sized network. Then

eliminates the unnecessary neurons which do not contribute to error decay process.

The procedure was inspired by the facts of neuroplasticity and synaptic pruning. In

the next chapter the all the experiments carried to justify the hypothesis and

evaluation method will be discussed.

101

CHAPTER 6

EXPERIMENTAL DESIGN AND RESULTS

6.1 Introduction

The previous chapter discussed the methodology of novel approach on designing the

hidden layer architecture in ANNs. The evaluation which describes the mechanism

of using this methodology is the most important section in the research. So that this

chapter presents the experiments carried on the project to evaluate the modeling of

the hidden layer architecture. Firstly, it shows that the performance of the network

can be improved by increasing the number of hidden layers. Then describes how to

achieve the optimal solution by using the novel approach.

6.2 Experimental Design

Most of the existing methods are based on the assumption that a single hidden layer

ANN is sufficient to solve many real world problems. However, initially this project

shows that the multilayer perceptron of ANN performs better than the single hidden

layer networks.

Next it reaches to the optimal solution. This process is done by the hypothesis that a

smaller sized network can be obtained by a given a large sized network by trimming

down its hidden layer architecture where the resultant network performs same or

better than the original one.

The following sections describe the experimental setup, test cases and testing

strategies made on this design.

6.2.1 Experimental setup

In order to test the above, some benchmark problems from different domains were

considered. All the benchmark problems were chosen from UCI machine learning

repository [169]. UCI machine learning repository maintains more than 400 data

102

sets. Among those it was chosen data sets which have used by other researchers for

the purpose of comparison of the results. In addition it was chosen data sets with

large and small number of instances, attributes and classes (outputs). Thus,

altogether it was considered 34 data sets belong to 19 different domains.

Each set is divided in to two classes for training and testing purposes. In order to

examine the different features, 5 benchmark problems namely Cancer, Card,

Diabetes, Flare and Knowledge were chosen and 4 different network configuration

of each data set were taken in to account. For example 4 different network

architectures of Cancer problem namely Cancer I, Cancer II, Cancer III and Cancer

IV were designed. The first 3 sets consist of 75%, 50% and 25% data samples in the

training set and the last set consists only 20 samples. The details of all the data sets

are depicted in the following Table 6.1.

The performance of an artificial neural network depends on several parameters such

as hidden layer architecture, learning rate, and the activation function, etc. Since,

this research concerns the hidden layer architecture of the network, all the other

parameters except number of hidden layers and the number of hidden neurons, made

constants throughout the training and testing process. The backpropagation

algorithm used to train each network. The logsigmoid function used as the

activation function for hidden layers and linear function used for the output layer.

When it was necessary, attribute values were recalled to be a real number between -

1 and +1. For each case, learning rate of backpropagation algorithm was fixed as

0.1. Initially, all the weights were chosen randomly and normalized. The stopping

criteria was decided as the error given by the equation 2 14 is 10
-4

 or pre-decided

maximum number of iterations.

To test the above

hypothesis, input was a large network trained by the

backpropagation algorithm. These were collected by different users who involve in

the research on the field of ANN.

103

Table 6.1: Information of Data Sets

 Data Set
No. of

Inputs

No.of

outputs

No. of

instance

Training

patterns

Testing

patterns
1 Banknote 4 2 1372 1029 343

2 Cancer I 9 2 699 525 174

3 Cancer II 9 2 699 350 349

4 Cancer III 9 2 699 175 524

5 Cancer IV 9 2 699 24 689

6 Card I 51 2 690 518 172

7 Card II 51 2 690 345 345

8 Card III 51 2 690 172 518

9 Card IV 51 2 690 12 678

10 Cardio 23 3 2126 1594 532

11 Climate 14 2 540 405 135

12 Diabetes I 8 2 768 576 192

13 Diabetes II 8 2 768 384 192

14 Diabetes III 8 2 768 192 576

15 Diabetes IV 8 2 768 50 716

16 Flare I 25 3 1066 800 266

17 Flare II 25 3 1066 533 533

18 Flare III 25 3 1066 266 800

19 Flare IV 25 3 1066 50 1016

20 Glass 9 7 214 160 54

21 Heberman 3 2 306 230 76

22 Iris 4 3 150 112 38

23 Knowledge I 4 4 403 302 101

24 Knowledge II 4 4 403 201 202

25 Knowledge III 4 4 403 100 303

26 Knowledge IV 4 4 403 20 383

27 Monk‘s 1 6 2 556 124 432

28 Monk‘s 2 6 2 602 170 432

29 Monk‘s 3 6 2 554 122 432

30 Seeds 7 3 210 158 52

31 Statlog 13 2 270 202 68

32 Thyroid 5 3 215 161 54

33 Tissue 9 2 106 80 26

34 Yeast 8 9 1484 1113 371

104

6.2.2 Test cases

In this chapter, first it will show that deep networks perform better than shallow

ones. In order to show this it has chosen above mentioned 5 bench mark problems

Cancer, Card, Diabetes, Flare and Knowledge. In addition, as mentioned in above,

different configuration of each of the sets was considered to test the behavior of the

network for different sizes of training sets. The descriptions of all 5 data sets are

given here while the others have described in the Appendix A.

6.2.2.1 Breast Cancer Wisconsin data set (Cancer)

The data set was introduced by Dr. William H. Wolberg of the University of

Wisconsin Hospital, Madison to diagnose the breast cancer and classify that a tumor

as either benign or malignant level [170],[171],[172]. The decision is made based on

the information gathered by microscopic examination of 9 features.

The data set contains 699 continuous examples, where 65.5% are in benign stage

[173]. To examine the performance of the proposed method different 4 types of data

sets, namely Cancer I, Cancer II, Cancer III and Cancer IV were considered with

distinct testing and training sets. The first group contains 75% of data in the training

set while other 25% used for testing purpose. The 2
nd

 set considered with 50% data

in training and the 3
rd

 set contains 25% as training data. Finally, a very small group

of data (20 sets) trained and tested the performance.

 6.2.2.2 Credit card approval data set (Card)

A database to predict the approval or rejection of credit card of an applicant is

presented here. Each example represents the details supplied by a real applicant and

output shows whether the corresponding organization granted a credit card to the

client or not. The decision makes based on 51 inputs with continuous values and

690 examples. Out of 690 applicants 44.5% show positive output [174]. Four

different networks architectures Card I, Card II, Card III and Card IV were designed

from this data base as shown in the following Table 6.3.

105

6.2.2.3 Pima Indians diabetes data set (Diabetes)

This data was originally created by the National Institute of Diabetes and Digestive

and Kidney Diseases to binary classification on whether a patient has diabetes.

There are records of 768 patients and out of 500 ( 65.1%) shown positive for

diabetes. All the patients here are females of above 21 years old of Pima Indian

heritage. Four different networks, namely Diabetes I, II, III and IV carry 75%,

50%, 25%, and 2% samples respectively created for testing [175].

6.2.2.4 Solar flare data set (Flare)

This database has been created to predict the solar flare which will occur in next 24

hours by using the information on past 24 hour period. In the set there are 1389

attributes and results are classified in three different classes, common flare,

moderate flare and severe flare [173].

There are 10 attributes in the input set. First 3 inputs are given as the alphabetical

characters whilst rest are integers. Before the training process, alphabetic characters

converted to integers.

6.2.2.5 User knowledge modeling data set (Knowledge)

The dataset is about the users' learning activities and knowledge levels on subjects

of DC Electrical Machines. Information of 403 users with 5 attributes including the

study time and exam performance considered for analysis. According to the

information, uses knowledge was classified into four classes, very low, low, middle

and high [176].

6.2.3 Testing strategies

Each of the above case was tested for their different configurations. As discussed in

chapter 5 generalization remains unchanged for layers greater than l, where

generally l is greater than 8. Hence, the maximum number of layers set as a

number greater than 8 and less than 20. Normally, the network with hidden layers

106

consists of N hidden neurons. Where N is approximately same as its training

patterns, but it can differ according to the user. The number of hidden layers in the

layer is denoted by . Hidden neurons chose in 3 different ways;

 ‗Equal‘ hidden neurons:

Number of hidden neurons in each layer is same. That is

 ‗Ascending‘ hidden neurons

Hidden neurons in each layer arrange in the ascending order.

 ‗Arbitrary‘ hidden neurons

Each layer contains an arbitrary chosen number and there is no any

special pattern among .

Generally, in each case

Initially, it was tested how the generalization changes while number of layers is

increasing. In order to test this, the above mentioned 5 bench mark problems trained

for different number of hidden layers varying from 1 to .

Next, the performance of novel algorithm was tested by using all the 34 data sets. In

the first step it determines the most appropriate number of hidden layers in the

network by using the peak search algorithm (PSA). Then eliminate irrelevant

neurons by considering the correlation coefficient of summation of delta values of

each hidden layer and the output error.

6.3 Experimental Results

6.3.1 The variation of network performance with the number of layers.

The below Table 6.2 shows the total number of samples in the training set () and

how the generalization changes with the number of hidden layers in each of the

Cancer problem. These results show that after reaching its maximum value, the

generalization decreases to a certain level and retain there while hidden layers add

107

to the network. Cancer I, II and III show their best generalization at 4 hidden layers

and then decreases until 6-9 layers. After this level although hidden layers are added

generalization is remained as constant. The Figure 6.1 shows the how the

performance of Cancer I changes while increasing the hidden layers. It is clear that

while adding hidden layers to the network generalization increases to a peak value

and then decreases to a certain level. The Figure 6.2 compares the performance of

all the Cancer problems. It indicates that when the training set is large, network

shows better performance. For example, Cancer I problem has 525 samples in the

training set. Initially, consider network with 20 hidden layers. As it was explained

in the section 6.2.3 the total number of hidden neurons chosen as a number close to

525. When these neurons divided equally among 20 layers, each layer consists of

* ⁄ + hidden neurons. This set shows the maximum generalization

99.4%. Further Cancer II and Cancer III perform in the same way and obtain their

maximum generalization 98.6% and 95.0% respectively. However, Cancer IV

problem has only 20 neurons in the training set and each layer contains only one

hidden neuron. The performance of this set is very weak and the maximum

generalization it shows is 66.7%.

Table 6.2: Changing performance with hidden layers in Cancer problems

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 12 20

Cancer I 525 97.7 97.7 98.9 99.4 99.4 96.0 94.3 95.4 62.6 62.6 62.6 62.6

Cancer II 350 97.1 97.4 97.7 98.6 97.7 97.7 65.6 65.6 65.6 65.6 65.6 65.6

Cancer III 175 94.7 94.7 94.7 95.0 94.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8

Cancer IV 20 63.5 66.7 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4

108

Figure 6.1: Changing performance with hidden layers in Cancer I problem

Figure 6.2: Generalization comparison of Cancer problems

109

Card and diabetes problems also show the similar pattern (Table 6.3 and Table 6.4).

In the card problem there are 51 attributes and comparatively Cancer sets

generalization of these configurations is weak. The best performance that Card

problems show is 88.1% when there are 75% of samples in the training set and 6

hidden layers in the network. Card I and II increase the generalization while adding

hidden layers to the network and reach to a similar peak value at 6 hidden layer

network and then decline. Card III gets its maximum generalization 84.8% for 5

hidden layered networks. Further in Card IV, when there are 20 samples in the

training set, it shows very poor performance. Although it reaches to the peak value

65.7% with 3 layer network, this is much lesser than the peak values of the other

configurations (Figure 6.3). The diabetes problems show their highest performance

in Diabetes I with 6 hidden layers. The Figure 6.4 depicts that when there are more

data in training set, it also shows better generalization.

Table 6.3: Changing performance with hidden layers in Card problems

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Card I 518 81.4 81.4 84.9 86.6 86.6 88.1 53.4 53.4 53.4 53.4 53.4 53.4

Card II 345 75.1 76.5 84.6 84.6 85.8 87.2 55.1 55.1 55.1 55.1 55.1 55.1

Card III 172 68.7 75.7 79.1 84.4 84.8 54.8 55.1 54.8 54.8 54.8 54.8 54.8

Card IV 20 59.4 62.2 65.7 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3

Table 6.4: Changing performance with hidden layers in Diabetes problems

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Diabetes I 576 78.6 79.7 82.8 82.8 81.8 81.8 63.5 63.5 63.5 63.5 63.5 63.5

Diabetes II 384 76.0 76.0 77.3 77.9 80.5 79.9 63.3 63.3 63.3 63.3 63.3 63.3

Diabetes III 192 71.7 78.3 78.3 78.3 63.7 63.7 63.7 63.7 63.7 63.7 63.7 63.7

Diabetes IV 50 71.1 77.5 77.5 65.2 65.2 65.2 65.2 65.2 65.2 65.2 65.2 65.2

110

Figure 6.3: Generalization comparison of Card problems

Figure 6.4: Generalization comparison of Diabetes problems

111

The Flare problems also interpret that the higher number of hidden layers gives

improved generalization than shallow networks (Table 6.5). However, in these

problems once it reaches to the peak value generalization retain there even for more

layers. For example Flare I – III reach to their maximum generalization at 7 layers.

The Flare IV reaches to this level at 6 hidden layers. However, as depicts in the

Figure 6.5, after reaching their highest values, generalization do not declines and it

retains the same value for higher number of layers.

Table 6.5: Changing performance with hidden layers in Flare problems

Data Set
No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Flare I 800 71.1 74.4 78.2 82.0 80.1 80.1 89.4 89.4 89.4 89.4 89.4 89.4

Flare II 533 81.8 79.2 80.1 83.0 83.5 87.4 92.7 92.7 92.7 92.7 92.7 92.7

Flare III 266 82.5 79.1 83.2 82.8 88.9 82.8 92.1 92.1 92.1 92.1 92.1 92.1

Flare IV 50 68.4 83.1 80.2 81.6 80.7 91.1 91.1 91.1 91.1 91.1 91.1 91.1

Figure 6.5: Generalization comparison of Flare problems

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10 11

G
en

er
al

iz
at

io
n

No. of Hidden Layers

Flare Problem

Flare I

Flare II

Flare III

Flare IV

112

Apart the above, efficiency of the network can be described by the time cost of the

training and this reflects by the number of iterations. Especially when it is difficult

to determine the performance by the generalization, training time could be

considered. For example, in the Knowledge I problem all the configurations show

100% performance for testing sets. Thus, in this case the time cost will be used to

determine the best architecture. The Figure 6.6 points up the number of epochs

taken to train the different sizes of networks. According to this result 3 layer

network shows the best performance as it could train by only 400 iterations while

others needs more than thousand of that.

Figure 6.6: No. of epochs take to train Knowledge I Problem

The Knowledge I problem shows 100% for all the configurations with 303 data

samples (75% samples from the whole set). However, while reducing the size of the

training set generalization for single hidden layer networks decline, nevertheless

they reach rapidly to their maximum generalization 100% and retain that for higher

number of hidden layer architectures (Figure 6.7).

As in other benchmark problems, generalization power is not a good measure for

Knowledge problems as they show almost 100% performances for each

configuration. Thus, the training time and number of epochs could be taken into

account to determine the best architecture. By comparing the training time, it is

observed that the single hidden layer network in Knowledge I problem takes 131.13

seconds to train the network while 3 layer network trains within 123.43 seconds.

200

400

600

800

1000

1200

1 2 3 4 5 6 7

E
p

o
ch

s

Number of Hidden Layers

Knowledge Problem

113

Both of these configurations give 100% performance but 3 layer network is

considered to be the best architecture as it is more economic.

Figure 6.7: Generalization comparison of Knowledge problems

All the above data sets show that generalization improves while increasing the

number of hidden layers. On the other words, single hidden layer network is not a

good solution for those problems. Further, data sets of the same domain show

different peak values for different sizes of training sample. Most probably, training

sets with large data sets show better performance.

In the next section we discuss the experiments done in determining the number of

layers by using the peak search algorithm. In order to find this, all the 34 data sets

given in the Table 6.1 were used.

6.3.2 Determining the number of hidden layers

The process of determining the number of hidden layers in the most appropriate

solution for the given problem was started with a network, trained by the

backpropagation algorithm for an arbitrary large number of hidden layers (say).

The Table 6.6 shows the number of hidden layers, generalization and the way of

choosing hidden neuronal structure of all the input data sets. The neuronal structure

of each architecture was decided by the user who involved to this experiment. We

conducted all the experiments based on the hypothesis that, ―any network with large

number of hidden layers can be reduced to a smaller sized network without

95

97

99

101

1 2 3 4 5 6 7 8 9G
en

er
al

iz
at

io
n

No. of Hidden Layers

Knowledge Problem

Knowledge I

Knowledge II

Knowledge III

Knowledge IV

114

degrading its performance.‖ The Peak Search Algorithm (PSA) described in the

previous chapter 5 was used to determine the number of hidden layers of each of the

network. To illustrate the procedure, the data set of cancer I and Flare I were chosen

and their process of determining the number of hidden layers is described as

follows. The process of achieving the number of hidden layers of all the other data

sets is described in the Appendix 2.

Cancer I Problem

The breast cancer I contains 699 data samples and 525 were chosen for training

purpose. The process started with a network with 20 hidden layers trained by the

backpropagation algorithm. The number of hidden neurons in each layer is assumed

to be same and this number is

[
525

2
] 26

Hence, the total number of hidden neurons is 26 × 2 52 .

174 data sets were used in the testing purpose. The generalization or the percentage

of correct responses of the initial network with 20 layers 62 6. was

observed as 97 7 As 1 continued the procedure. Initially, 1 and

 2 . Then

 [
1 2

2
] 1

 was computed as 62 6 It agrees with the statement in

the section 5.2. Hence, peak lies between 1 and 10. Then removed the interval

 1 2] and replaced by 1 and new

 [
1 1

2
] 5

and 99 4

Therefore, . According to the , the peak

can lie in interval [1 5] or [5, 10]. Then compute the mid points of two intervals

and such that,

115

 [
1 5

2
] 3 [

5 1

2
] 7

It observed that

 98 9 and 94 3

Then peak lies in the interval, where { } lies.

Therefore, peak lies in the interval [3 7] and since, , the peak can lie

in interval [3 5] or [5, 7]. Then compute the mid points of two intervals and

such that,

 [
3 5

2
] 4 [

5 7

2
] 6

Then peak lies in the interval, where { } lies.

That is in the interval [3 5] and since 3 4 5 are consecutive numbers, the number

of layers which gives highest generalization is

{ { }} 4

(Note: In this case , so that it chooses smaller network as the optimimum

solution.)

To achieve the peak value of the above Cancer I problem, only 7 networks were

trained. That is networks with layers 1 3 4 5 6 7 and 1 The whole process of

determining the number of hidden layers which gives the best architecture in Cancer

problem by the peak search algorithm is depicted by the Figure 6.8.

116

Table 6.6: Details of Initial networks

Data Set
No. of Hidden

Layers

Total no. of

hidden neurons

Type of hidden

neurons

Generalization

(%)

1 Banknote 12 1014 Ascending 100

2 Cancer I 20 520 Equal 62.6

3 Cancer II 20 360 Equal 65.6

4 Cancer III 20 180 Equal 65.8

5 Cancer IV 20 20 Equal 65.4

6 Card I 12 516 Equal 53.4

7 Card II 12 348 Equal 55.1

8 Card III 12 168 Equal 54.8

9 Card IV 12 12 Equal 55.3

10 Cardio 12 1560 Ascending 58.9

11 Climate 10 400 Equal 92.6

12 Diabetes I 15 570 Equal 63.5

13 Diabetes II 15 390 Equal 63.2

14 Diabetes III 15 195 Equal 63.7

15 Diabetes IV 15 45 Equal 65.1

16 Flare I 12 780 Ascending 89.8

17 Flare II 12 546 Ascending 92.7

18 Flare III 12 234 Ascending 92.1

19 Flare IV 12 78 Ascending 91.1

20 Glass 10 160 Equal 100

21 Heberman 10 230 Equal 71.4

22 Iris 12 108 Equal 100

23 Knowledge I 12 300 Equal 100

24 Knowledge II 12 204 Equal 100

25 Knowledge III 12 96 Equal 100

26 Knowledge IV 12 24 Equal 100

27 Monk‘s 1 10 120 Equal 100

28 Monk‘s 2 12 169 Arbitrary 67.1

29 Monk‘s 3 12 120 Equal 100

30 Seeds 10 130 Equal 0.0

31 Statlog 15 195 Equal 55.9

32 Thyroid 12 156 Equal 66.7

33 Tissue 10 80 Equal 100

34 Yeast 12 1092 Ascending 100

117

Figure 6.8: Determining number of hidden layers in Cancer I

Flare I Problem

The Flare problem consists of 800 training patterns and a network was created with

12 layers, where neurons are distributed ascending order as shown in the following

table. The total number of hidden neurons was chosen as a number close to the

number of training patterns. Hence, as given in the table Table 6.5 the total number

of hidden neurons was taken as 780. Initially set 1 and 12. The

generalization of the network of 12 hidden layers was given as

 89 4

The generalization of one hidden layer network is computed as

 71 1

118

Table 6.7: Distribution of hidden neurons in Flare I data set

As 1 and 1 , the process continued and is computed as

 [
1 12

2
] 6

 8 1 and therefore, .

Hence, according to the case II in section 5.5.2 the peak lies in [6,12] and the

interval [1,6) can be removed and replace by 6. The new is computed as

 [
6 12

2
] 9

 89 4 and , by in section 5.5.2, and are computed.

 [
6 9

2
] 7 [

9 12

2
] 1

 89 4 , Hence, . Now 6 can be removed and

thus L is replaced by 7. However, now this process has come to its worst scenario.

That is as all the corresponding values are equal, generalization of each possible

value of interval should be computed. However, it shows

 89 4

Now as every value in the interval [7 12] show generalization 89.4, the number of

hidden layers in most appropriate network is taken as the least number in the

corresponding interval, i.e, number of hidden layers in the most appropriate network

is 7.

The process is described in the following Figure 6.9

No. of hidden

Layers

1

2

3

4

5

6

7

8

9

10

11

12

No. of hidden

neurons

10

20

30

40

50

60

70

80

90

100

110

120

119

Figure 6.9: Determining number of hidden layers in Flare I problem

The below Table 6.8 shows the results obtained by the peak search algorithm. It

clearly shows that multilayer architectures of ANNs give better generalization than

the single hidden layer networks. In these results only the ‗Yeast‘ data set reaches to

its best performance with single hidden layer network. All the other problems

needed two or more hidden layers. However, about 70% data sets reach to their

maximum generalization within 5 hidden layers.

120

Table 6.8: Details of New architecture obtained by the Peak Search Algorithms

Data Set

No. of Hidden

Layers

Total no. of

hidden neurons

Amount of neuron

reduction (%)

Generalization

%

Generalization

Improvement

(%)

1 Banknote 2 172 83.3 100 0.0

2 Cancer I 4 104 80.0 99.4 36.8

3 Cancer II 4 72 80.0 95.7 30.1

4 Cancer III 4 36 80.0 95.0 29.2

5 Cancer IV 2 2 90.0 65.4 0.0

6 Card I 6 258 50.0 87.2 33.7

7 Card II 6 145 58.3 85.8 31.0

8 Card III 5 70 58.3 85.3 30.4

9 Card IV 3 3 75.0 65.7 10.4

10 Cardio 4 200 87.2 72.9 14.0

11 Climate 2 80 80.0 97.8 5.2

12 Diabetes I 3 114 80.0 82.8 19.3

13 Diabetes II 5 130 66.7 80.5 17.2

14 Diabetes III 4 52 73.3 78.3 14.6

15 Diabetes IV 3 9 80.0 77.5 12.4

16 Flare I 7 280 64.1 89.8 0.0

17 Flare II 7 196 64.1 92.7 0.0

18 Flare III 7 84 64.1 92.1 0.0

19 Flare IV 6 21 73.1 91.1 0.0

20 Glass 4 64 60.0 100 0.0

21 Heberman 6 138 40.0 77.9 6.5

22 Iris 4 36 66.7 100 0.0

23 Knowledge I 3 75 75.0 100 0.0

24 Knowledge II 4 68 66.7 100 0.0

25 Knowledge III 3 24 75.0 100 0.0

26 Knowledge IV 2 4 83.3 100 0.0

27 Monk‘s 1 7 84 30.0 100 0.0

28 Monk‘s 2 4 78 53.9 86.8 19.1

29 Monk‘s 3 6 60 50.0 100 0.0

30 Seeds 4 52 60.0 90.6 90.6

31 Statlog 8 104 46.7 100 44.1

32 Thyroid 4 52 66.7 94.4 27.8

33 Tissue 5 40 50.0 100 0.0

34 Yeast 1 14 91.7 100 0.0

121

6.3.3 Correlation between the sum of Delta values and the output error

When the number of hidden layers is fixed, the network starts the pruning process.

The one of the main factors considered on pruning was the correlation between the

sum of delta values of each layer and the output error which is denoted by .

Empirical results show that, most probably the value of for the last hidden layer

shows a negative value. In this section we discuss about this correlation for some of

the above benchmark applications.

6.3.4 Correlation between the sum of Delta values and the output error

When the number of hidden layers is fixed, the network starts the pruning process.

The one of the main factors considered on pruning was the correlation between the

sum of delta values of each layer and the output error which is denoted by .

Empirical results show that, most probably the value of for the last hidden layer

shows a negative value. In this section we discuss about this correlation for some of

the above benchmark applications.

Cancer I problem shows its better performance for 4 hidden layer network. So that,

we consider this architecture to prune unnecessary neurons. The Table 6.9 and

Figure 6.10 depict the corresponding results of correlations after the first iteration of

this Problem. These results imply that there is a significant relation between the sum

of delta values and the output error and hence, this result is able to use in identifying

the neurons such that removing those neurons, output error will decrease, i.e, by

eliminating such neurons generalization power of the ANN would be increased.

Table 6.9: Correlations of the Cancer I data set

Correlation 0.8913 -0.8853 0.8332 -0.8771

122

This figure shows that although summations of delta values are different, all the

layers have same pattern, but it alternates the sign at each layer. A similar results

can be observed in Cancer II, III and IV, which depict in the Table 6.11.

Figure 6.10: Correlations of Cancer I problem

The Card I problem shows its highest performance when there are 6 layers in the

network and sum of the delta values in all 6 layers show significant correlation with

the output error (Table 6.10 and Figure 6.11) The two problems Card II and Card

III reach to their peaks with 6 and 5 hidden layers respectively and all these sets

show significant correlation in for each hidden layer h.

123

Table 6.10: Correlations of the Card I data set

Figure 6.11: Correlations of Card I problem

Correlation 0.8046 -0.8047 0.8088 -0.7993 0.8138 -0.8160

124

Figure 6.12: Correlation of the Banknote problem

The correlations of all such data sets are shown in the following Table 6.11. This

shows that most of the datasets show considerable correlation . That is more

than 78% show significant correlation. Other than banknote, every other network‘s

changes its sign of at each layer. Therefore, in these networks delta values and

their signs are taken into consideration when removing the neurons from the hidden

layers.

Banknote, Flare I, II, III, IV and Statlog problems have poor correlations. In

addition, unlike the other networks, the correlations of both the layers of Banknote

have the same (negative) sign. In these problems, sign of delta values are not

considered while eliminating neurons. So that, in these cases in order to improve the

performance, neurons which have positive or negative infinitesimal delta values are

remove from the network.

125

Table 6.11: Correlation between sum of delta values and output error

 Data Set
Number of Hidden Layers

1 2 3 4 5 6 7 8 9

1 Banknote -0.0657 -0.0871

2 Cancer I 0.8913 -0.8853 0.8332 -0.8771

3 Cancer II 0.9396 -0.9384 0.9242 -0.9362

4 Cancer III 0.9575 -0.9587 0.9475 -0.9672

5 Cancer IV 0.6200 -0.6256

6 Card 1 0.8046 -0.8047 0.8088 -0.7993 0.8138 -0.8160

7 Card II -0.8478 0.8487 -0.8509 0.8736 -0.8662

8 Card III -0.9660 0.9642 -0.9761 0.9743 -0.9747

9 Cardio 0.6685 -0.6679 0.6810 -0.6776

10 Climate 0.8839 -0.9024

11 Diabetes 1 -0.8324 0.8314 -0.8327

12 Diabetes 2 -0.8156 0.8332 -0.8006 0.8397 -0.7755

13 Diabetes III 0.8650 -0.8626 0.8602 -0.9016

14 Diabetes IV -0.9694 0.9705 -0.9699

15 Flare 1 0.1470 -0.1522 0.1520 -0.1512 0.1512 -0.1143 0.1284

16 Flare II 0.1491 -0.1540 0.1543 -0.1528 0.1587 -0.1201 0.1548

17 Flare III 0.2913 -0.3149 0.3161 -0.3128 0.3118 -0.2795 .2786

18 Flare IV -0.5623 0.5648 -0.5707 0.5676 -0.5738 0.5209

19 Glass 0.8255 -0.8328 0.8216 -0.8608

20 Heberman 0.8595 -0.8595 0.8629 -0.8650 0.8714 -.8867

21 Iris 0.8448 -0.7906 0.8760 -0.9691

22 Knowledge I -0.6889 0.6613 -0.7366

23 Knowledge II 0.8519 -0.8481 0.8646 -0.8422

24 Knowledge III -0.9213 0.9298 -0.9543

25 Knowledge IV 0.6327 -0.7295

26 Monk‘s 1 -0.8592 0.8607 -0.8568 0.8604 -0.8720 0.8903 -0.9079

27 Monk‘s 2 -0.7754 0.7738 -0.7744 0.7671

28 Monk‘s 3 0.8233 -0.8222 0.8249 -0.8258 0.8424 -0.8415

29 Seeds -0.7893 0.8442 -0.8501 0.8512 -0.8513 0.8741 -0.8843

30 Statlog 0.1445 -0.1432 0.1408 -0.1456 0.1602 -0.1587 0.1814 -0.0878

31 Thyroid 0.8863 -0.8863 0.8914 -0.8846

32 Tissue -0.6813 0.6866 -0.6270 0.5226 -0.8259

33 Yeast -0.7964

126

6.3.5 Removing neurons

In order to attain the optimal architecture, the unimportant neurons in the error

decay process must be removed from the network architecture. In previous chapter,

it was explained the procedure of eliminating neurons.

Basically, we use the correlation coefficient shown in the above Table 6.11 to

determine the removable neurons. If there is significant positive correlation value

for , the error could be minimized by removing the neurons with positive delta

values. In this case, the neurons, which show infinitesimal positive for every

training sample in the data set will be identified as removable neurons. In contrast,

when there is a considerable negative correlation, neurons, which show the negative

delta value whose absolute value is very close to zero for each training sample in the

set will be removed.

While removing the unnecessary neurons from the network it merges the neurons

with similar weight vectors as described in the previous section 5.5.6. The Table

6.12 below depicts the experimental results and it compares the resultant network

with the network obtained by the PSA and the initial network.

The Cancer I problem started with 20 hidden layers and 520 hidden neurons divided

equally among the layers. The generalization of initial network was 62.6%. The

network obtained by PSA contained 4 layers and 104 hidden neurons. (Each layer

consisted of 26 neurons). This network showed generalization 99.4%. By using

delta values of hidden neurons it was identified 10 unnecessary neurons (3, 4, 2 and

1 from each layer) and removed them from the network. Hence, the optimal solution

of this problem contains only 4 layers and 94 neurons. The hidden layer architecture

was 23 – 22 – 24 – 25. The proposed method has reduced 9.6% percent of hidden

neurons from the network obtained by PSA. But this stage generalization had not

increased. Comparing with the original network, it has reduced 81.9% neurons and

improved generalization by 36.8%.

127

Similar results can be seen on the other data sets such as Cancer II, Card I, II,

Diabetes I-III, Heberman and Seeds etc. The data sets such as Banknote, Flare I-IV

and Glass, Iris have initially reached to their maximum generalization. Hence, by

new algorithm it has lessened only the size of the network, which will enable to

reduce test time. However, if we use very small data set as Cancer IV and Diabetes

IV we cannot expect any improvement and process will last with the same network

structure and the generalization.

128

Table 6.12: Neural network architectures obtained by the new model

Data Set

No. of

Hidden

Layers

Total

no. of

hidden

neurons

Reduction of

neurons

Generalization

%

Improvement

Relative

to

Phase I

Relative

to the

original

network

Relative

to

phase I

Relative

to the

original

network
1 Banknote 2 26 33.3 97.4 100 0.0 0.0

2 Cancer I 4 94 9.6 81.9 99.4 0.0 36.8

3 Cancer II 4 38 47.2 89.4 98.6 0.9 32.1

4 Cancer III 4 31 13.9 82.8 95 0.0 29.2

5 Cancer IV 2 2 0.0 90.0 65.4 0.0 0.0

6 Card I 6 239 7.4 53.7 87.8 0.6 34.3

7 Card II 6 110 24.1 68.4 84.4 0.6 31.3

8 Card III 5 70 0.0 58.3 85.3 0.0 30.4

 Card IV 3 3 0.0 75.0 65.7 0.0 10.4

9 Cardio 4 160 20.0 89.7 77.0 4.1 18.1

10 Climate 2 64 20 84.0 97.8 0.0 5.2

11 Diabetes I 3 100 12.3 82.5 84.4 1.6 20.9

12 Diabetes II 5 130 0.0 66.7 80.5 0.0 17.2

13 Diabetes III 4 46 11.5 76.4 78.6 0.3 14.9

14 Diabetes IV 3 9 0.0 80.0 77.5 0.0 12.4

15 Flare I 7 23 91.8 97.0 89.8 0.0 0.0

16 Flare II 7 150 23.5 72.5 92.7 0.0 0.0

17 Flare III 7 80 4.8 65.8 92.1 0.0 0.0

18 Flare IV 6 21 0.0 73.1 91.1 0.0 0.0

19 Glass 4 60 6.3 62.5 100 0.0 0.0

20 Heberman 6 101 26.8 56.1 79.2 1.3 7.8

21 Iris 4 18 50.0 83.3 100 0.0 0.0

22 Knowledge I 3 42 44 86 100 0.0 0.0

23 Knowledge II 4 39 42.6 80.9 100 0.0 0.0

24 Knowledge III 3 24 0.0 75 100 0.0 0.0

25 Knowledge IV 2 4 0.0 83.3 100 0.0 0.0

26 Monk‘s 1 7 60 28.6 50.0 100 0.0 0.0

27 Monk‘s 2 4 67 14.1 60.4 87.1 0.3 20.0

28 Monk‘s 3 6 47 21.7 60.8 100 0.0 0.0

29 Seeds 7 42 19.2 67.7 93.2 2.6 93.2

30 Statlog 8 68 34.6 65.1 100 0.0 0.0

31 Thyroid 4 38 26.9 75.6 94.4 0.0 27.8

32 Tissue 5 33 17.5 58.8 100 0.0 0.0

33 Yeast 1 9 35.7 99.1 100 0.0 0.0

129

6.6 Data Analysis

The summary of the hidden layers that gives the best performance is depicted in the

Figure 6.13. According to the results all the networks show their best architecture

within 8 hidden layers and more than 67% of them reach to the best architecture

within 5 hidden layers. Moreover, it implies that the single hidden layer network is

not the best solution for most of the problems, because only one data set (3%)

shows its best performance with a single hidden layer ANN architecture. According

to these results the average of the hidden layers in the most appropriate network is

4. However, very few data sets (about 3%) need more than 7 layers to show their

best performance.

Figure 6.13: Summary of Peak search algorithm

The number of hidden layers, which gives the best performance for each of the

problem is given in the Table 6.8. It implies that the given method reduces network

to a small one relative to the initial network. For example, in climate problem, initial

network consists of 10 hidden layers with 400 neurons. But the resultant network

contains only 64 neurons which are distributed in two layers. Comparing with the

original network 84% of neurons have been removed while increasing the

130

generalization from 92.6% to 97.8%. In some problems such as Cancer, Diabetes

and Flare, there is a huge reduction of neurons while increasing the generalization.

The data set Yeast seems to train easily and they give 100% correct responses for

single hidden layer networks. In this problem initial network contains 10 layers,

which gives 100% generalization. The PSA firstly compute the generalization for a

single hidden layer network and it was observed as 100%. Then the process stopped

after computing the performance of single hidden layer networks. The Banknote

Authentication set showed zero correct mappings for the single hidden layer

network. Hence, procedure of PSA continued, and it was observed that each ANN

architecture with higher number of layers gives 100% correct mappings. Thus,

always right half of the interval removed and process ended with two-layer network.

Unlike the other problems, Seeds data set starts with zero performance with 10

hidden layers. However, PSA shows that this set gives its highest generalization

90.6% at 7 hidden layers.

The data sets of Flare I – IV, have been shown their maximum generalization for the

initially input network architectures. Therefore, once the peak search results achieve

this level, it retains there. Similar results show in the data sets of Glass, Iris,

Knowledge I – IV, Monk‘s 1, 3 and Tissue with 100% of their highest performance.

Thus, in each of these problems, the network with the smallest number that shows

this highest performance is considered as the best architecture. In these problems,

even though there is no improvement of generalization by comparing with original

network, the performance is upgraded due to the training time is reduced by making

the network smaller.

The results obtained by the above results verified the assumption that ‗any trained

network can be reduced to a smaller sized network without degrading its

performance‘. Because according the experimental results, all 34 data sets have

been reduced their sizes by at least 25% while improving the performance. The

Figure 6.14 shows that, 17 samples that are 50% percent of the data sets remove

more than 75% of the hidden neurons while achieving the optimal solution. Another

131

47% (16 samples) were able to remove 51% -75% neurons and only 1 set (3%)

reduces its size by 26% - 50%.

In addition, among the 17 data sets which reduce their size over 75%, two problems

have been increased the generalization between 10% - 30%. Another 6 problems

show 0% - 10% improvement of the performance. However, 7 data sets do not show

any upgrading of their generalization as they have started with their highest

generalization. For example, Flare I and Yeast problem. The initial configuration of

these sets shows their maximum generalization 89.8% and 100% respectively.

During the elimination process they reduce their hidden layer structure and make

the data sets smaller. But their generalization retain at the same value.

The Figure 6.15 explains that how the generalization has been improved in the

above 34 data sets from their initial configuration. It shows that 9 data sets (26% of

data) improve their generalization above 20%. Another 6 and 2 data sets upgrade

their performance between 10% - 20% and 0%-10% respectively. Nevertheless, 17

data sets (50%) begin the procedure with their maximum generalization and hence,

they do not show any improvement of their generalization.

Figure 6.14: Reduction of neurons from the initial network configuration

132

Figure 6.15: Increase of the generalization comparing with the initial network

6.4 Comparison with Existing Method

It was discussed in the Chapter 2 that, OBS and OBD are the two well-known

methods in pruning, but they need extra computations for accommodate the Hessian

matrix. The efficiency of Skeletonization method [73] is low as it always choose the

neuron with least salience at each iteration. In addition, the productivity of MBP

methods are not up to the standards, because they concern only on the magnitude of

the connection weights in pruning [64]. The method of N2PS perform better than

several other methods. However, it has restricted only for single hidden layer

networks. A constructive method called rule extraction from ANNs (REANN) is

also give significant results in medical diagnose problems, nevertheless it has not

discussed the solution for large set of output vectors.

The proposed method (PSDV) does not have complex computations and hence, it

has easy accommodation in any large data set. On the other hand, while applying

the peak search algorithm it removes all the neurons in the particular layer.

Moreover, in the second part it recognizes all the removable neurons at once to trim

the ANN architecture. Hence, rather than eliminating one neuron at a time PSDV

133

removes cluster of neurons at once. Therefore, relative to other approaches, the

proposed method reaches to the optimal architecture of hidden layers faster.

The following Table 6.13 depicts the comparison of the generalization PSDV with

some existing methods. ‗-‗indicates that information is not available. It implies that

this method gives best generalization relative to many other methods. Hence, PSDV

is a very promising approach in determining the hidden layer architecture in ANNs.

Table 6.13: Generalization of PSDV and other existing methods

 Method

Dataset

VNP

N2PS

OBD

OBS

MBP

REANN

PSDV

Cancer 97.8 97.1 92.5 90 94.2 96.28 99.4

Diabetes 70.3 69.1 68.6 65.4 68.9 76.56 84.4

Iris 97.7 98.7 98 98 98 - 100

The following Figure 6.16 illustrates the results of the above table. It is clear that the

proposed method PSDV has achieves highest accuracy in all 3 problems Cancer,

Diabetes and Iris. In the other entire methods network consist only one single layer.

Thus, it is obvious that generalization of network can be improved by adding more

layers to the network.

Figure 6.16: Comparison of PSDV with the other existing methods

134

6.5 Summary

This chapter emphasizes the experimental results carried out to prove the hypothesis

that any large network can be pruned to a smaller one by removing the hidden layers

and hidden neurons without degrading its performance. 34 data sets were analyzed.

From the entire network we were able to get a smaller network that the resultant

network show same or better performance. Experimental results show that the single

hidden layer network is not a good architecture for ANNs and some networks need

8 – 9 layers to give a considerable solution. The significant number of data sets

reach to their best architecture within 4 hidden layers and probability of having such

network is 0.56. At the end it compared with the existing methods and observed

that the novel approach described here always gives best generalization. The next

chapter will discuss how to extend the proposed PSDV method for deep leaning

networks.

135

CHAPTER 7

USING PSDV FOR DEEP NEURAL NETWORKS

7.1 Introduction

The previous chapter discussed the evaluation of newly introduced Peak Search and

Delta Value (PSDV) method. It was observed that any large, trained network could

be pruned to a more efficient network with lesser number of hidden layers and

hidden neurons. Experimental results implied that, generally multilayered

feedforward networks show better generalization than shallow networks.

This chapter discusses how the PSDV method could be applied for deep neural

networks. First, it introduces basic concepts of deep neural networks followed by

the two widely used deep neural networks namely Convolutional Neural Networks

and Deep Belief Networks. Next, it will discuss how to implement the proposed

PSDV method to very common two deep nets namely, convolutional networks and

deep belief networks.

7.2 Preamble to Deep Neural Networks

Deep learning neural networks that refer the artificial neural networks which

consist of large number of hidden neurons arranged in several layers with different

levels of abstraction [177], [178]. The concept of deep learning algorithms was

inspired by the hierarchical structures of human speech perception and production

systems [179]. The networks can be trained as supervised or unsupervised manner.

The techniques of the deep learning widely used in image recognition, natural

language processing, transcribe speeches in to text and match new items etc. These

networks can be performed without interference of human. They are able to work

closer to or sometimes better than human. The conventional machine learning

process is required a feature extractor that could transform the raw data, such that

pixel value to image etc. into numerical vector form, which could represent an input

pattern.

136

The deep learning methods are representative learning methods which transforms

input data of one level to a more abstract level. For instance, in image recognition,

the input is an array of pixel values. The first layer represents the existence or non-

existence of edges at particular positions in the image. The second layer detects the

patterns by spotting the particular arrangements of edges. The third layer arranges

the patterns of main objects and higher order layers would detect objects as these

parts [178].

Creating a simple network with one hidden layer is too simple to model complex

structures on many real world problems. Because of the hardness of using multi-

layers, until recently, most researches restricted their researches for only single

hidden layered networks. However, for better interpretation in the human brain

sensory cortex, it needs an efficient way of adapting synaptic weights of multi-

layers of feature detection neurons. Because, active features in the higher layers are

much better guide to activation of appropriate action than the lower level features

[180]. For example, the visual system has multi-layers and it is able to generate

features better than shallow networks [181]. However, in early 1990s, while

backpropagation based training of multi-layered neural networks found to be

difficult, deep learning showed feasible results on unsupervised learning for some

extend. Since then deep learning neural networks became very popular and recent

years it has won many contests in pattern recognition and machine learning [182].

Based on the mathematical operations and requirement of parameters to perform the

output, deep learning networks can be divided to several categories. Some widely

used architectures in deep learning [181], [183] are as follows.

 Feedforward Neural Networks (FNN)

 Convolutional Neural Networks (CNN)

 Deep Belief Networks (DBN)

Throughout the previous six chapters, the obtaining optimal architecture for

feedforward neural networks by using PSDV method was discussed, and it was

concluded that deep feedforward neural networks show much generalized solution

137

relative to shallow networks. Therefore, This chapter will discuss how to apply the

PSDV method to two widely used deep neural networks namely, convolutional and

deep belief neural networks.

However, deep neural network architectures are not restricted only for the above

architectures and similar way it can apply the proposed method to other existing

architectures too.

7.2.1 Convolutional neural networks

Like feedforward neural networks, Convolutional neural networks (CNNs) also

consist of neurons with learnable connection weights. The major difference here is,

they have used convolutional operation in some layers instead of matrix

multiplication. The CNNs are originally designed to work with images and aim of

them is to use spatial information between the pixels of image [184]. One of the first

convolutional networks was LeNet-5, introduced by LeCun et al., which could

classify handwritten digits. Other than the input layer, LeNet-5 contained 7 layers

with trainable parameters (weights) and can be trained by backpropagation

algorithm [185]. Generally, CNNs are based on discrete convolution [186].

The convolution of two functions and is defined as follows.

When and are continuous functions,

 ∫ ∫

 ∫ 7 1

When the functions are discrete, integral is replaced by the sum

 ∑ ∑

 7 2

138

There are numerous different architectures in CNNs. But they all have same basic

components. Usually a CNN has 3 types of layers namely, convolution layers,

pooling layers and fully connected layers.

The convolutional layers learn feature maps representation of their inputs. An input

of a CNN is an element with 3 parameters, height, width and colour (R, G, B,

colours). Then the input proceeds sequentially through layers and each layer

transforms signals using convolutional filters (kernels) [187] as shown in the Figure

7.1. As the retinal of human eye does, convolutional operators absorb features of the

image by dividing them into small slices [188].

Figure 7.1: The basic architecture of a convolutional neural network

A pooling layer is placed in between two convolutional layers to achieve the shift –

invariance by reducing the resolution of the feature maps. The pooling layers resize

the spatiality in inputs by independently operates on every depth slice of the input.

The widely used types of pooling are max pooling and average pooling. In between

convolutional and pooling layers, the activation function such as, ReLU exists.

After many convolutional and pooling layers, there may some number of fully

connected layers. The higher order cognitive part in the neural network is

functioning through these fully connected layers. Generally, at present available

networks have used maximum three hidden layers in this part. Neurons in these

layers have connections to all activation in previous convolutional and pooling

layers as in feedforward artificial neural networks. These activations are done with

139

matrix multiplication. The activation functions such as softmax [189] or sigmoid are

used to classify the output classes.

7.2.2 Deep belief neural networks

Deep belief network (DBN) was introduced by Geoffrey E. Hinton [190] to

overcome the limitations of deep feedforward artificial neural networks. The two

most important properties of DBNs are

 There is a layer by layer procedure for learning the top-down, generative

weights that determines how the variables in one layer depend on the

variables in the layer above.

 After learning vales of latent variables in every layer can be inferred by a

single, bottom-up pass that starts with an observed data vector in the bottom

layer and uses the generative weights in the reverse direction.

Unlike backpropagation algorithm deep nets leaning networks can be trained by

unsupervised learning algorithms for feature detection. However, after unsupervised

leaning DBN can further fine-tuned through supervised learning to perform

classification or regression. This greedy-layered wise training is mostly performed

by using backpropagation or other gradient decent algorithm [191]. In these

networks each layer acts as a feature generator and converts the input to more

abstract representation. A DBN consists of two different types of networks namely

Belief Networks and Restricted Boltzmann Machines (RBM).

Belief Network: Belief network is a directed acyclic graph that composed with

layers of stochastic binary units with weighted connections. These stochastic binary

units have values 0 or 1. The probability to obtain 1 is decided by the bias and

weights of the inputs. Thus, the probability equation of these units is as

 (1)
1

1 ∑
 7 3

Where and are the inputs of neurons i and j respectively. is the synaptic

weight between i
th

 and j
th

 neurons.

140

Restricted Boltzmann Machines: Boltzmann machine is an undirected graph with

stochastic binary units. The restricted type of Boltzmann machine composed with

one visible layer to represent the data and one hidden layer. The hidden layer

represents the features that capture higher order correlation in data. These input and

visible layers are connected by a symmetric weight matrix. It says ‗restricted‘,

because there are no connections between the neurons in the same layer [192],

[193]. The restricted connectivity between hidden units makes learning easier.

7.3 Using PSDV for Deep Neural Networks

Deep learning refers the multiple levels of representation and feature detection.

Hence, it always looks for deeper and deeper networks for better accuracy of the

solution. It is known that deeper networks are difficulty to train. On the other hand,

they need unaffordable training time. Therefore, it can observe that, in recent past

researchers have started to discuss the optimization of deep learning architectures

[192], [193]. However, several research works are undergoing and there are only

limited literatures and many researchers have used trial and error method to

determine optimal network architecture.

Although the PSDV method was introduced to FNNs, there are some rooms to

extent this method to other deep learning architecture too. Hence, this section will

discuss the applying of PSDV method to other deep neural architectures by

considering two widely used deep leaning architectures namely convolutional neural

networks and deep belief networks as examples.

7.3.1 Applying PSDV to convolutional neural networks

The first part of a convolutional network is composed with some convolutional

layers and pooling layers alternatively. This part of the network is used for feature

detection. It has observed that having more layers in the network cause to obtain

better generalized solution. But sometimes adding layer may face over-fitting. In

addition, complexity of the network will increases with the number of layers. In

141

such a case Peak Search Algorithm described in Chapter 5 can apply to obtain the

optimal neural network architecture.

However, this application is completely depends on the given problem. Because,

training a convolutional network is very resource hungry. Therefore, application of

PSDV involving additional training for the entire architecture (pooling layers and

fully connected layers) of the CNN is counterproductive. On the other hand, pooling

layers in a CNN are introduced on the basis of some interested features of inputs.

Therefore, it is rather irrational to attempt to drop some layers and neurons from

pooling layers. Therefore, PSDV can be applicable only for fully connected network

part of a CNN.

As already stated, latter part of CNNs there are composed of fully connected layers,

and they are trained by using the backpropagation algorithm. Therefore, latter part

of fully connected layers in a CNN behaves like feedforward artificial neural

networks. We have already shown PSDV works for feedforward networks. As such

fully connected network within a CNN should work with PSDV. In such instance, it

is possible reduce the size of network by reducing the number of hidden layers and

removing less important hidden neurons (if exist) by using the delta values as

describe in the Chapter 5.

7.3.2 Applying PSDV to deep belief neural networks

A deep belief network is an unsupervised learning networks trains by greedy

leaning algorithm to discover new features. As stated, PSDV cannot be applied for

unsupervised learning networks. Therefore, PSDV is not applicable for belief

networks as they are.

However, after detecting features, some DBNs execute fine tuning of the results, by

a subsequent supervised learning network which uses backpropagation training

algorithm. Given that PSDV is applicable for supervised learning, DBNs involving

a phase of supervised leaning could be optimized by PSDV.

142

7.4 Summary

The objective of this chapter was to discuss the concept of deep learning and to

explain how PSDV could be applied for deep neural networks. In this sense, first,

the concept of deep neural networks was discussed in relation to deep Convolutional

Neural Networks (CNN) and Deep Belief Networks (DBN). Secondly, it was

explained that PSDV could be applied for the phase involving supervised learning

in CNN and DBN. As such fully connected network in CNN, and DBN associating

with supervised learning could be optimized by PSDV.

The next chapter will conclude the results and discuss the future works.

143

CHAPTER 8

CONCLUSION AND FUTURE WORKS

8.1 Introduction

The interest in applying artificial neural networks of many fields including

medicine, economics agriculture and engineering has been increased within the last

few decades. Hence, the modelling of hidden layer architecture in ANNs has

become crucial and important area of research. Throughout this research, a new

method on designing hidden layer architecture of ANNs was discussed. The

previous chapter discussed the experimental designing results of the newly

introduced method. This chapter provides a summary of the thesis. The next gives

the achievement of objectives mentioned in the chapter 1 and then concludes the

experimental results. Further, it discusses the limitations and future works.

8.2 Modelling Hidden Layer Architecture in ANN

Artificial neural networks are widely used in many real world problems including

classification and pattern recognition. Despite many advantages of ANNs, choose

the most appropriate architecture which gives the optimal solution for the given task

is crucial. This thesis has addressed this problem by critically reviewing the existing

many approaches. Although there are variety of approaches inspired by different

optimization theories, still they have several drawbacks. The converging to

undesired local minima has been identified as the one of main limitation of the

current methods. This problem may be avoided by using the global optimization.

However, these algorithms may not computationally economical [8].

The proposed novel approach to modelling hidden layers in ANN is inspired by the

facts of neuroplasticity. Experimental results show that any large network can be

trimmed down to a smaller one by pruning its hidden layers and neurons. However,

the number of hidden layers in the architecture is significant and it depends on

several parameters such as type of data, size of input vector and number of samples

in the training set.

144

The accuracy of the result obtained by an ANN strongly depends on the number of

hidden layers in the network. Generally, multilayered perceptron‘s give better

performance than single hidden layer networks. However, there is an upper limit on

the number of hidden layers and the maximum number of hidden layers found in a

network in this research was 9 for Monk‘s 3 problem. The majority of the data sets

achieved their best performance by 4 hidden layers.

The proposed method successfully pruned the network without degrading its

performance. By the neurons elimination process, 5% - 50 % have been removed

from the networks obtained by the PSA. As a whole, the process was able to

eliminate about 80 % while improving the generalization. It is obvious that new

method gives a better solution than the training an arbitrary sized network with back

propagation algorithm. In addition, it shows improved results in generalization,

comparing with the many existing methods. Moreover, this method does not have

complex arithmetic and hence, it is easy to accommodate. Not only that, but also

this approach eliminates cluster of neurons at once instead of removing one at each

iteration. Thus, it reaches the optimal solution faster.

8.3 Objectives-wise Achievement

The aim of our research is to design most appropriate neural network architecture to

solve the given problem. We achieved this goal while fulfilling the following

objectives mentioned in the Chapter 1.

Critical review of artificial neural networks and their uses: The chapter 2

discussed the fundamental concepts of ANNs and critically reviews their uses.

Further this was focused on different structure of ANNs and neural network

learning by highlighting the activation functions and different learning rules

associate with supervised learning, unsupervised learning and reinforcement

learning. Moreover, it emphasized that the backpropagation learning rule is the most

145

widely learning algorithms and with the invention of the backpropagation algorithm,

the research interest on ANNs was dramatically increased.

In depth study of current approaches to model hidden layer architecture in

ANNs: The Chapter 2 discussed various methods of modelling hidden layer

architecture. Generally, these approaches have developed under 3 major techniques,

pruning, constructive and evolutionary. It was considered methods from early 1940

to 2015. Also, most famous approaches include OBD, OBS were taken in to

account. The methodologies, strengths and weakness were discussed in depth. At

the end strengths and limitations of deep learning algorithms were discussed.

Develop an approach to prune hidden layer architecture of ANNs: The Chapter

5 addresses the requirement of this objective. This is the most important chapter as

the achievement of the whole research totally depends on this approach. The process

was initiated with the hypothesis that any large network could make smaller one

without degrading its performance by trimming down the neurons and weight

connections. Two algorithms were designed to reach the optimal architecture and

the first algorithm which determines the number of hidden layers was encouraged

by bi-search algorithms. The second algorithm design to fine tune the network

obtained by the first part by removing the irrelevant neurons. The removable

neurons on the second phase were determined based on the delta values of hidden

neurons. The layered structure, neurons elimination and merging were inspired by

the facts of the neuroplasticity and the synaptic pruning.

Evaluate of the novel approach: Evaluate the model which has obtained in the

previous section is also one of the main tasks of this research. The evaluation

process of this research was achieved by chapter 6. For this model, the evaluation

was done with 34 real-world applications in 19 different domains. For all the data, it

was able reduce the number of hidden layers and hidden neurons from the ANN

architecture. Hence, the modified architecture is computationally economic.

Among the all data sets, 25% was able to reduce its size in more than 80%. In

addition 15 data sets increased their accuracy while reducing the size. In the new

146

model it increases the accuracy mainly from 10% to 30%. However, some of the

datasets started with their highest accuracy, and hence, it was not able to improve

their generalization using this model. So, as the overall results, it shows that, this

new method is able to cut down a large sized network to a smaller network while

improving the performance. Not only that, it also depicts that, the proposed method

gives better performance than many of the existing approaches.

Extension of PSDV Method into Deep Neural Networks: In recent years, deep

neural networks have become one of the hot topics in pattern recognition and

machine learning. However, training a deep network is hard and researches have

started to see the possibilities of optimize the architectures for much efficient

solution. Chapter 7 considered this matter and discussed how to extend the PSDV

method to deep neural architectures. The convolutional neural networks and deep

belief networks are two of widely used deep learning architectures and to identify

unnecessary neurons and reduce some layer of these networks PSDV method can be

applied. Also these results can be extended to the other existing deep nets too.

8.4 Limitations and Future Directions

The proposed method is successfully reached to the optimal solution with less

computation relative to the other existing methods. However, this may not be the

best achievement as still some limitations are there and they should be improved to

enhance the applications of this method.

Activation Function: The Back propagation algorithm was used in all the training

process and the log sigmoid function was used as activation function in the hidden

layers whilst linear function was used in the output layer. The log sigmoid function

attains its limsup at about 8 repetitions and thus, the output of each network squeeze

after a certain number of layers. So that in deeper networks, more knowledge will

be lost, which will be caused on a huge error. To avoid this fault, some other

activation function such as the rectified linear unit (ReLU) has been used in some

deep networks. Nevertheless, ReLU fails at some points as it can be fragile and die

147

during the training. Hence, experiments need to be done with a carefully chosen

activation function.

Theoretical Aspects: Most of the decisions in this project derived based on the

empirical results. Hence, the conclusion made here may diverge if we employ a

different set of data. Hence, it encourages obtaining mathematical evidence on these

aspects. For example, rather than showing network reach to a peak while increasing

the hidden layers, it will be more appropriate if we can obtain an analytical solution.

The ultimate goal of modeling hidden layer architecture is to come across a solid

method, which enables to apply in solving the extremely complex data sets in the

real-world problems.

8.5 Summary

This chapter concludes works done throughout this thesis. It summarized how it

achieved the main objectives given in the Chapter 1. Further it discussed the

achievements of newly introduced PSDV algorithm and how to extend to deep

neural networks. Finally, it highlighted the limitations and future works.

148

REFERENCES

[1] Y. Liu, J. A. Starzyk, and Z. Zhu, ―Optimizing number of hidden neurons in

neural networks.,‖ in Artificial Intelligence and Applications, 2007, pp. 138–

143.

[2] J. Amini, ―Optimum Learning Rate in Back-Propagation Neural Network for

Classification of Satellite Images (IRS-1D),‖ Sci. Iran., vol. 15, no. 6, pp. 558–

567, Dec. 2008.

[3] K. Hornik, M. Stinchcombe, and H. White, ―Multilayer feedforward networks

are universal approximators,‖ Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

[4] R. P. Lippmann, ―Anintroduction to computing with neural nets,‖,‖ IEEE Assp

Mag., vol. 4, no. 2, pp. 4–22, 1987.

[5] Y. L Cun, ―Generalization and Network Design Strategies,‖ Connect.

Perspect., no. Pfeifer, Schreter, Fogelman and Steels (eds) ―Connectionism in

perspective,‖ Elsevier, pp. 143–155, 1989.

[6] J. Denker, D. Schwartz, B. W ittner, S. Solla, R. Howard, and L. Jackel,

―Large Automatic Learning, Rule Extraction, and Generalization,‖ Complex

Syst., vol. 1, pp. 877–922, 1987.

[7] ―Brain Plasticity: How learning changes your brain,‖ SharpBrains, 26-Feb-

2008. [Online]. Available: https://sharpbrains.com/blog/2008/02/26/brain-

plasticity-how-learning-changes-your-brain/. [Accessed: 08-Jun-2019].

[8] A. D. Anastasiadis, ―Neural networks training and applications using

biological data,‖ PhD Thesis, Birkbeck, University of London, UK, 2006.

[9] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, ―Effective

backpropagation training with variable stepsize,‖ Neural Netw., vol. 10, no. 1,

pp. 69–82, 1997.

[10] V. Demarin and S. Morović, ―Neuroplasticity,‖ Period. Biol., vol. 116, no. 2,

pp. 209–211, 2014.

[11] O. Mahmoud, F. Anwar, and M. J. E. Salami, ―Learning algorithm effect on

multilayer feed forward artificial neural network performance in image

coding,‖ J Eng Sci Technol, vol. 2, no. 2, pp. 188–199, 2007.

[12] G. Castellano, A. M. Fanelli, and M. Pelillo, ―An iterative pruning algorithm

for feedforward neural networks,‖ IEEE Trans. Neural Netw., vol. 8, no. 3, pp.

519–531, 1997.

[13] S. E. Fahlman and C. Lebiere, ―The cascade-correlation learning architecture,‖

in Advances in neural information processing systems, 1990, pp. 524–532.

[14] T. Ash, ―Dynamic node creation in backpropagation networks,‖ Connect. Sci.,

vol. 1, no. 4, pp. 365–375, 1989.

[15] R. Reed, ―Pruning algorithms-a survey,‖ IEEE Trans. Neural Netw., vol. 4, no.

5, pp. 740–747, 1993.

[16] Y. LeCun, J. S. Denker, and S. A. Solla, ―Optimal brain damage,‖ in Advances

in neural information processing systems, 1990, pp. 598–605.

[17] R. Setiono, ―A penalty-function approach for pruning feedforward neural

networks,‖ Neural Comput., vol. 9, no. 1, pp. 185–204, 1997.

149

[18] M. Hagiwara, ―A simple and effective method for removal of hidden units and

weights,‖ Neurocomputing, vol. 6, no. 2, pp. 207–218, 1994.

[19] B. Hassibi and D. G. Stork, ―Second order derivatives for network pruning:

Optimal brain surgeon,‖ in Advances in neural information processing

systems, 1993, pp. 164–171.

[20] S. M. Kamruzzaman and M. D. Islam, ―An algorithm to extract rules from

artificial neural networks for medical diagnosis problems,‖ ArXiv Prepr.

ArXiv10094566, 2010.

[21] P. L. Narasimha, W. H. Delashmit, M. T. Manry, J. Li, and F. Maldonado, ―An

integrated growing-pruning method for feedforward network training,‖

Neurocomputing, vol. 71, no. 13–15, pp. 2831–2847, 2008.

[22] H.-G. Han and J.-F. Qiao, ―A structure optimisation algorithm for feedforward

neural network construction,‖ Neurocomputing, vol. 99, pp. 347–357, 2013.

[23] S. Lawrence, C. L. Giles, and A. C. Tsoi, ―What size neural network gives

optimal generalization? Convergence properties of backpropagation,‖ 1998.

[24] D. R. Wilson and T. R. Martinez, ―The need for small learning rates on large

problems,‖ in Neural Networks, 2001. Proceedings. IJCNN’01. International

Joint Conference on, 2001, vol. 1, pp. 115–119.

[25] S. Herculano-Houzel, ―The human brain in numbers: a linearly scaled-up

primate brain,‖ Front. Hum. Neurosci., vol. 3, p. 31, 2009.

[26] J. T. Bruer, ―Neural connections: Some you use, some you lose,‖ Phi Delta

Kappan, vol. 81, no. 4, pp. 264–277, 1999.

[27] G. Chechik, I. Meilijson, and E. Ruppin, ―Synaptic pruning in development: A

novel account in neural terms,‖ in Computational Neuroscience, Springer,

1998, pp. 149–154.

[28] T. Dean, ―A computational model of the cerebral cortex,‖ in Proceedings of

the National Conference on Artificial Intelligence, 2005, vol. 20, p. 938.

[29] L. N. Long and A. Gupta, ―Scalable massively parallel artificial neural

networks,‖ J. Aerosp. Comput. Inf. Commun., vol. 5, no. 1, pp. 3–15, 2008.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ―Learning internal

representations by error propagation,‖ California Univ San Diego La Jolla Inst

for Cognitive Science, 1985.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ―Learning representations

by back-propagating errors,‖ Cogn. Model., vol. 5, no. 3, p. 1, 1988.

[32] N. M. Wagarachchi and A. S. Karunananda, ―Optimization of multi-layer

artificial neural networks using delta values of hidden layers,‖ in 2013 IEEE

Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and

Brain (CCMB), 2013, pp. 80–86.

[33] S. Haykin, Neural Networks and Machine Learning, Third Edition. Prentice

Hall.

[34] P. J. Fox, ―Massively parallel neural computation,‖ PhD Thesis, University of

Cambridge, 2013.

[35] A. Azzini, ―A New Genetic Approach for Neural Network Design and

Optimization,‖ Ph. D. Dissertation. Universita Degli Studi Di Milano,

Unpublished, 2006.

[36] S. N. Sivanandam and M. PaulraJ, Introduction to Artificial Neural Networks.

Vikas Publishing House Pvt Ltd.

150

[37] J. A. Hertz, A. S. Krogh, and R. G. Palmer, Introduction to the Theory of

Neural Computation. Citeseer.

[38] A. K. Jain, J. Mao, and K. M. Mohiuddin, ―Artificial neural networks: A

tutorial,‖ Computer, no. 3, pp. 31–44, 1996.

[39] ―Similarities Between the Computer and the Brain,‖ PC Dreams, 15-Jun-2016.

.

[40] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural network

design. Martin Hagan, 2014.

[41] W. S. McCulloch and W. Pitts, ―Complete Gradient Clustering Algorithm for

Features Analysis of X-ray Images,‖ Bull. Math. Biophys., vol. 5, no. 4, pp.

115–133, 1943.

[42] D. O. Hebb, the organization of behavior - Google Search. .

[43] F. Rosenblatt, ―The perceptron: a probabilistic model for information storage

and organization in the brain.,‖ Psychol. Rev., vol. 65, no. 6, p. 386, 1958.

[44] B. Widrow, M. E. Hoff, and others, ―Adaptive switching circuits,‖ in IRE

WESCON convention record, 1960, vol. 4, pp. 96–104.

[45] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave Design.

Boston: Artech House, 2000.

[46] Bernard Widrow and Michael A. Lehr, ―Adaptive Neural Networks and Their

Applications,‖ Int. J. Intellegence Syst., vol. 8, pp. 453–507, 1993.

[47] J. A. Bullinaria, Radial Basis Function Networks: Introduction. 2004.

[48] M. J. Orr, Introduction to radial basis function networks. Technical Report,

Center for Cognitive Science, University of Edinburgh, 1996.

[49] S. Becker, ―Unsupervised learning procedures for neural networks,‖ Int. J.

Neural Syst., vol. 2, no. 01n02, pp. 17–33, 1991.

[50] J. L. McCLELLAND, D. E. RUMELHART, and G. E. HINTON, ―The Appeal

of Parallel Distributed Processing,‖ MIT Press, vol. 01, pp. 151–193., 1986.

[51] N. J. Nilson, Learning Machines: Foundations of Trainable Pattern

Classifiers. New York: McGraw Hills, 1965.

[52] Marvin L Minskey and Seymour A. Papert, Perceptrons. USA: The Science

Press.

[53] M. A. Nielson, Neural Networks and Deep Learning. 2015.

[54] R. Rojas, ―Neural Networks: a systematic introduction,‖ 2009.

[55] R. M. Freund, ―The steepest descent algorithm for unconstrained optimization

and a bisection line-search method,‖ J. Mass. Inst. Technol. U. S. Am., 2004.

[56] J. C. Meza, ―Steepest descent,‖ Wiley Interdiscip. Rev. Comput. Stat., vol. 2,

no. 6, pp. 719–722, 2010.

[57] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, ―A learning algorithm for

Boltzmann machines,‖ Cogn. Sci., vol. 9, no. 1, pp. 147–169, 1985.

[58] G. Hinton, ―Boltzmann machines,‖ in Encyclopedia of Machine Learning,

Springer, 2011, pp. 132–136.

[59] P. Paxton, P. J. Curran, K. A. Bollen, J. Kirby, and F. Chen, ―Monte Carlo

experiments: Design and implementation,‖ Struct. Equ. Model., vol. 8, no. 2,

pp. 287–312, 2001.

[60] G. Thimm and E. Fiesler, ―Pruning of neural networks,‖ IDIAP, 1997.

151

[61] J. Ghosh and K. Tumer, ―Structural adaptation and generalization in

supervised feed-forward networks, d,‖ J. Artif. Neural Netw., vol. 01, pp. 431–

458, 1994.

[62] D. Sabo and X.-H. Yu, ―A new pruning algorithm for neural network

dimension analysis,‖ in Neural Networks, 2008. IJCNN 2008.(IEEE World

Congress on Computational Intelligence). IEEE International Joint

Conference on, 2008, pp. 3313–3318.

[63] G. G. Rigatos and S. G. Tzafestas, ―Attractors and energy spectrum of neural

structures based on the model of the quantum harmonic oscillator,‖ in

Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters,

IGI Global, 2009, pp. 376–410.

[64] M. G. Augasta and T. Kathirvalavakumar, ―A novel pruning algorithm for

optimizing feedforward neural network of classification problems,‖ Neural

Process. Lett., vol. 34, no. 3, p. 241, 2011.

[65] M. G. Augasta and T. Kathirvalavakumar, ―Pruning algorithms of neural

networks—a comparative study,‖ Cent. Eur. J. Comput. Sci., vol. 3, no. 3, pp.

105–115, 2013.

[66] S. Marsland, J. Shapiro, and U. Nehmzow, ―A self-organising network that

grows when required,‖ Neural Netw., vol. 15, no. 8, pp. 1041–1058, 2002.

[67] M. M. Islam and K. Murase, ―A new algorithm to design compact two-hidden-

layer artificial neural networks,‖ Neural Netw., vol. 14, no. 9, pp. 1265–1278,

2001.

[68] S. Cohen and N. Intrator, ―Forward and backward selection in regression

hybrid network,‖ in International Workshop on Multiple Classifier Systems,

2002, pp. 98–107.

[69] P. A. Castillo, M. G. Arenas, J. J. Castillo-Valdivieso, J. J. Merelo, A. Prieto,

and G. Romero, ―Artificial neural networks design using evolutionary

algorithms,‖ in Advances in Soft Computing, Springer, 2003, pp. 43–52.

[70] J. R. McDonnell and D. Waagen, ―Determining neural network hidden layer

size using evolutionary programming,‖ DTIC Document, 1993.

[71] Z. Reitermanov´a, ―Feedforward Neural Networks – Architecture Optimization

and ... - Google Search,‖ WDS08 Proc. Contrib. Pap., vol. 1, pp. 159–164,

2008.

[72] J. Sietsma and R. J. Dow, ―Neural net pruning-why and how,‖ presented at the

IEEE international conference on neural networks, 1988, vol. 1, pp. 325–333.

[73] M. C. Mozer and P. Smolensky, ―Skeletonization: A technique for trimming

the fat from a network via relevance assessment,‖ 1989.

[74] K. O. Arras, ―An introduction to error propagation: Derivation, meaning and

examples of cy= fx cx fx,‖ 1998.

[75] S. Haykin, ―The Least Mean Square Algorithm,‖ in Neural Networks and

Learning Machines, .

[76] J. Gorodkin, L. K. Hansen, A. Krogh, C. Svarer, and O. Winther, ―A

quantitative study of pruning by optimal brain damage,‖ Int. J. Neural Syst.,

vol. 4, no. 02, pp. 159–169, 1993.

[77] B. Hassibi, D. G. Stork, and G. J. Wolff, ―Optimal brain surgeon and general

network pruning,‖ in Neural Networks, 1993., IEEE International Conference

on, 1993, pp. 293–299.

152

[78] T. Kavzoglu and P. M. Mather, ―Assessing artificial neural network pruning

Algorithms,‖ Proc. 24th Annu. Conf. Exhib. Remote Sens. Soc. UK, pp. 603–

609, 1998.

[79] J. Sietsma and R. J. F. Dow, ―Creating artificial neural networks that

generalize,‖ Neural Netw., vol. 4, pp. 67–79, 1991.

[80] J. Sietsma and R. J. Dow, ―Creating artificial neural networks that generalize,‖

Neural Netw., vol. 4, no. 1, pp. 67–79, 1991.

[81] P. Lauret, E. Fock, and T. A. Mara, ―A node pruning algorithm based on a

Fourier amplitude sensitivity test method,‖ IEEE Trans. Neural Netw., vol. 17,

no. 2, pp. 273–293, 2006.

[82] A. Saltelli, S. Tarantola, and K.-S. Chan, ―A quantitative model-independent

method for global sensitivity analysis of model output,‖ Technometrics, vol.

41, no. 1, pp. 39–56, 1999.

[83] X. Zeng and D. S. Yeung, ―Hidden neuron pruning of multilayer perceptrons

using a quantified sensitivity measure,‖ Neurocomputing, vol. 69, no. 7, pp.

825–837, 2006.

[84] P. V. S. Ponnapalli, K. C. Ho, and M. Thomson, ―A formal selection and

pruning algorithm for feedforward artificial neural network optimization,‖

IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 964–968, 1999.

[85] T. Q. Huynh and R. Setiono, ―Effective neural network pruning using cross-

validation,‖ in Proceedings. 2005 IEEE International Joint Conference on

Neural Networks, 2005., 2005, vol. 2, pp. 972–977.

[86] K. Suzuki, I. Horiba, and N. Sugie, ―A simple neural network pruning

algorithm with application to filter synthesis,‖ Neural Process. Lett., vol. 13,

no. 1, pp. 43–53, 2001.

[87] F. Fnaiech, N. Fnaiech, and M. Najim, ―A new feedforward neural network

hidden layer neuron pruning algorithm,‖ in Acoustics, Speech, and Signal

Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International

Conference on, 2001, vol. 2, pp. 1277–1280.

[88] ―volterra series - Google Search.‖ [Online]. Available:

https://www.google.lk/?gws_rd=ssl#q=volterra+series. [Accessed: 28-Jul-

2016].

[89] L. Carassale and A. Kareem, ―Modeling nonlinear systems by Volterra series,‖

J. Eng. Mech., vol. 136, no. 6, pp. 801–818, 2009.

[90] J. Sai, P. Yang, S. Zhong, J. Wang, and J. Uk Kim, ―A Novel Adaptive

Architecture Pruning Algorithm for Madalines,‖ Int. J. Hybrid Inf. Technol.,

vol. 9, no. 6, pp. 303–316, 2016.

[91] R. Winter and B. Widrow, ―MADALINE RULE 11: A Training Algorithm for

Neural Networks,‖ presented at the IEEE International Conference on Neural

Networks 1988, 401–408., 2015.

[92] ―ADALINE,‖ Wikipedia, the free encyclopedia. 07-May-2016.

[93] S. Zhong, X. Zeng, S. Wu, and L. Han, ―Sensitivity-based adaptive learning

rules for binary feedforward neural networks,‖ IEEE Trans. Neural Netw.

Learn. Syst., vol. 23, no. 3, pp. 480–491, 2012.

[94] A. P. Engelbrecht, ―A new pruning heuristic based on variance analysis of

sensitivity information,‖ IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1386–

1399, 2001.

153

[95] H.-J. Xing and B.-G. Hu, ―Two-phase construction of multilayer perceptrons

using information theory,‖ IEEE Trans. Neural Netw., vol. 20, no. 4, pp. 715–

721, 2009.

[96] J. Xu and D. W. Ho, ―A new training and pruning algorithm based on node

dependence and Jacobian rank deficiency,‖ Neurocomputing, vol. 70, no. 1,

pp. 544–558, 2006.

[97] M. I. Lourakis, ―A brief description of the Levenberg-Marquardt algorithm

implemented by levmar,‖ Found. Res. Technol., vol. 4, no. 1, 2005.

[98] Y. Chauvin, ―A Back-Propagation Algorithm with Optimal Use of Hidden

Units.,‖ in NIPS, 1988, vol. 1, pp. 519–526.

[99] C. Ji, R. R. Snapp, and D. Psaltis, ―Generalizing smoothness constraints from

discrete samples,‖ Neural Comput., vol. 2, no. 2, pp. 188–197, 1990.

[100] ―Back-propagation, weight elimination and time series prediction,‖

ResearchGate. [Online]. Available:

https://www.researchgate.net/publication/245578996_Back-

propagation_weight_elimination_and_time_series_prediction. [Accessed: 11-

Apr-2017].

[101] G. E. Hinton, ―Connectionist learning procedures,‖ Artif. Intell., vol. 40, no.

1–3, pp. 185–234, 1989.

[102] S. K. Sharma and P. Chandra, ―Constructive neural networks: a review,‖ Int.

J. Eng. Sci. Technol., vol. 2, no. 12, pp. 7847–7855, 2010.

[103] R. Parekh, J. Yang, and V. Honavar, ―Constructive neural-network learning

algorithms for pattern classification,‖ IEEE Trans. Neural Netw., vol. 11, no.

2, pp. 436–451, 2000.

[104] S. S. Sridhar and M. Ponnavaikko, ―Improved Adaptive Learning Algorithm

forConstructive Neural Networks,‖ Int. J. Comput. Electr. Eng., vol. 3, no. 1,

p. 30, 2011.

[105] T.-Y. Kwok and D. Y. Yeung, ―Constructive feedforward neural networks

for regression problems: A survey,‖ 1995.

[106] M. V. M. Figueredo, ―A Learning Algorithm for Constructive Neural

Networks Inspired on Decision Trees and Evolutionary Algorithms.‖

[107] J. Moody, ―Prediction risk and architecture selection for neural networks,‖ in

From Statistics to Neural Networks, Springer, 1994, pp. 147–165.

[108] M. R. Azimi-Sadjadi, S. Sheedvash, and F. O. Trujillo, ―Recursive dynamic

node creation in multilayer neural networks,‖ IEEE Trans. Neural Netw., vol.

4, no. 2, pp. 242–256, 1993.

[109] B.-T. Zhang, ―An incremental learning algorithm that optimizes network

size and sample size in one trial,‖ in Neural Networks, 1994. IEEE World

Congress on Computational Intelligence., 1994 IEEE International

Conference on, 1994, vol. 1, pp. 215–220.

[110] M. Mézard and J.-P. Nadal, ―Learning in feedforward layered networks: The

tiling algorithm,‖ J. Phys. Math. Gen., vol. 22, no. 12, p. 2191, 1989.

[111] S. I. Gallant, ―Perceptron-based learning algorithms,‖ IEEE Trans. Neural

Netw., vol. 1, no. 2, pp. 179–191, 1990.

[112] J. H. Friedman and W. Stuetzle, ―Projection pursuit regression,‖ J. Am. Stat.

Assoc., vol. 76, no. 376, pp. 817–823, 1981.

154

[113] J. H. Friedman, E. Grosse, and W. Stuetzle, ―Multidimensional additive

spline approximation,‖ SIAM J. Sci. Stat. Comput., vol. 4, no. 2, pp. 291–301,

1983.

[114] J.-N. Hwangy, S.-R. Layy, M. Maechlerz, D. Martin, and J. Schimert,

―Regression Modeling in Back-Propagation and Projection Pursuit Learning3,‖

IEEE Trans Neural Netw., no. 3, pp. 324–353, 1994.

[115] C. B. Roosen and T. J. Hastie, ―Automatic smoothing spline projection

pursuit,‖ J. Comput. Graph. Stat., vol. 3, no. 3, pp. 235–248, 1994.

[116] Y. Shin and J. Ghosh, ―Ridge polynomial networks,‖ IEEE Trans. Neural

Netw., vol. 6, no. 3, pp. 610–622, 1995.

[117] J.-L. Yuan and T. L. Fine, ―Forecasting demand for electric power,‖ Adv.

Neural Inf. Process. Syst., pp. 739–739, 1993.

[118] I. Rivals and L. Personnaz, ―A statistical procedure for determining the

optimal number of hidden neurons of a neural model,‖ in Proceedings of the

Second ICSC Symposium on Neural Computation NC, 2000.

[119] K. Alam, B. Chandra Karmokar, and M. Siddiquee, ―A COMPARISON OF

CONSTRUCTIVE AND PRUNING ALGORITHMS TO DESIGN NEURAL

NETWORKS,‖ Indian J. Comput. Sci. Eng., vol. 2, Jun. 2011.

[120] S. Asthana, R. K. Bhujade, N. Sharma, and R. Singh, ―Handwritten

Multiscript Pin Code Recognition System having Multiple hidden layers using

Back Propagation Neural Network,‖ Int. J. Electron. Commun. Comput. Eng.

ISSN Online, 2011.

[121] S. Karsoliya, ―Approximating number of hidden layer neurons in multiple

hidden layer BPNN architecture,‖ Int. J. Eng. Trends Technol., vol. 3, no. 6,

pp. 713–717, 2012.

[122] L. Vollmer, ―Change Your Mind: Neuroplasticity & Buddhist

Transformation,‖ 2010.

[123] A. Pascual-Leone, A. Amedi, F. Fregni, and L. B. Merabet, ―The plastic

human brain cortex,‖ Annu Rev Neurosci, vol. 28, pp. 377–401, 2005.

[124] J. J. Eggermont, The Correlative Brain: Theory and Experiment in Neural

Interaction. New York: Springer-Verlag, 1990.

[125] P. S. Churchland and T. J. Sejnowski, The Computational Brain.

Cambridge,MA: MIT Press, 1992.

[126] Y. Perwej and F. Parwej, ―A Neuroplasticity (Brain Plasticity) Approach to

Use in Artificial Neural Network.‖

[127] J. Chrol-Cannon and Y. Jin, ―Computational modeling of neural plasticity

for self-organization of neural networks,‖ BioSystems, vol. 125, pp. 43–54,

2014.

[128] S. Trojan and J. Pokorny, ―Threoretical aspects of neuroplasticity,‖ Physiol.

Res., vol. 48, pp. 87–98, 1999.

[129] D. Krech, M. R. Rosenzweig, and E. L. Bennett, ―Chemical and anatomical

plasticity of brain,‖ Science, vol. 146, pp. 610–619, 1964.

[130] F. R. Ferreira, M. I. Nogueira, and J. DeFelipe, ―The influence of James and

Darwin on Cajal and his research into the neuron theory and evolution of the

nervous system,‖ Front. Neuroanat., vol. 8, 2014.

[131] J. William, The principles of psychology. New York: Holt, 1890.

[132] J. Konorski, ―Conditioned reflexes and neuron organization.,‖ 1948.

155

[133] V. Demarin and S. Morović, ―Neuroplasticity,‖ Period. Biol., vol. 116, no.

2, pp. 209–211, 2014.

[134] P. Bach-y-Rita and S. W. Kercel, ―Sensory substitution and the human–

machine interface,‖ Trends Cogn. Sci., vol. 7, no. 12, pp. 541–546, 2003.

[135] ―The Amazing Mind – Brain and Its Neuroplasticity | My Becoming

Aware.‖ [Online]. Available:

https://mybecomingaware.wordpress.com/2016/02/08/the-amazing-mind-

brain-and-its-neuroplasticity/. [Accessed: 04-Mar-2018].

[136] O. Bukalo and A. Dityatev, ―Synaptic cell adhesion molecules,‖ in Synaptic

Plasticity, Springer, 2012, pp. 97–128.

[137] J. E. Heuser and T. S. Reese, ―Structure of the synapse,‖ Compr. Physiol.,

1977.

[138] G. M. Shepherd, ―The Synaptic Organization of the,‖ BrainOxford Univ.

Press NY 1979, 1990.

[139] G. M. Shepherd, The Synoptic Organization of the Brain, 3rd ed. New York:

Oxford University Press, 1990.

[140] G. Silberberg, S. Grillner, F. E. LeBeau, R. Maex, and H. Markram,

―Synaptic pathways in neural microcircuits,‖ Trends Neurosci., vol. 28, no. 10,

pp. 541–551, 2005.

[141] J.-P. Thivierge and G. F. Marcus, ―The topographic brain: from neural

connectivity to cognition,‖ Trends Neurosci., vol. 30, no. 6, pp. 251–259,

2007.

[142] R. B. Wells, ―Cortical neurons and circuits: a tutorial introduction,‖ Unpubl.

Pap. Www Mrc Uidaho Edu, 2005.

[143] V. B. Mountcastle, ―The columnar organization of the neocortex.,‖ Brain,

vol. 120, no. 4, pp. 701–722, 1997.

[144] A. M. Thomson, ―Neocortical layer 6, a review,‖ Front. Neuroanat., vol. 4,

2010.

[145] J. Stiles and T. L. Jernigan, ―The basics of brain development,‖

Neuropsychol. Rev., vol. 20, no. 4, pp. 327–348, 2010.

[146] B. J. Casey, J. N. Giedd, and K. M. Thomas, ―Structural and functional brain

development and its relation to cognitive development,‖ Biol. Psychol., vol.

54, no. 1, pp. 241–257, 2000.

[147] J. Stiles, T. T. Brown, F. Haist, and T. L. Jernigan, ―Brain and Cognitive

Development,‖ Handb. Child Psychol. Dev. Sci., 2015.

[148] M. A. Curtis, M. Kam, and R. L. Faull, ―Neurogenesis in humans,‖ Eur. J.

Neurosci., vol. 33, no. 6, pp. 1170–1174, 2011.

[149] M. Götz and W. B. Huttner, ―The cell biology of neurogenesis,‖ Nat. Rev.

Mol. Cell Biol., vol. 6, no. 10, pp. 777–788, 2005.

[150] J. Altman, ―Are new neurons formed in the brains of adult mammals,‖

Science, vol. 135, no. 3509, pp. 1127–1128, 1962.

[151] D. Purves et al., ―Neuronal Migration,‖ 2001.

[152] B. Nadarajah, P. Alifragis, R. O. L. Wong, and J. G. Parnavelas, ―Neuronal

Migration in the Developing Cerebral Cortex: Observations Based on Real-

time Imaging,‖ Cereb. Cortex, vol. 13, no. 6, pp. 607–611, Jun. 2003.

[153] C. L. de Rouvroit and A. M. Goffinet, ―Neuronal migration,‖ Mech. Dev.,

vol. 105, no. 1, pp. 47–56, 2001.

156

[154] R. C. Malenka, ―Synaptic plasticity in the hippocampus: LTP and LTD,‖

Cell, vol. 78, no. 4, pp. 535–538, 1994.

[155] ―kolb_07.pdf.‖ .

[156] J. Shaffer, ―Neuroplasticity and positive psychology in clinical practice: A

review for combined benefits,‖ Psychology, vol. 3, no. 12, p. 1110, 2012.

[157] R. Marciniak, K. Sheardova, P. Čermáková, D. Hudeček, R. Šumec, and J.

Hort, ―Effect of meditation on cognitive functions in context of aging and

neurodegenerative diseases,‖ Front. Behav. Neurosci., vol. 8, p. 17, 2014.

[158] P. R. Huttenlocher and A. S. Dabholkar, ―Regional differences in

synaptogenesis in human cerebral cortex,‖ J. Comp. Neurol., vol. 387, no. 2,

pp. 167–178, 1997.

[159] F. I. Craik and E. Bialystok, ―Cognition through the lifespan: mechanisms of

change,‖ Trends Cogn. Sci., vol. 10, no. 3, pp. 131–138, 2006.

[160] ―Children with Autism Have Extra Synapses in Brain,‖ Columbia University

Medical Center, 21-Aug-2014. [Online]. Available:

http://newsroom.cumc.columbia.edu/blog/2014/08/21/children-autism-extra-

synapses-brain/. [Accessed: 10-Aug-2017].

[161] N. C. Andreasen, P. Nopoulos, V. Magnotta, R. Pierson, S. Ziebell, and B.-

C. Ho, ―Progressive brain change in schizophrenia: a prospective longitudinal

study of first-episode schizophrenia,‖ Biol. Psychiatry, vol. 70, no. 7, pp. 672–

679, 2011.

[162] P. R. Huttenlocher and others, ―Synaptic density in human frontal cortex-

developmental changes and effects of aging,‖ Brain Res, vol. 163, no. 2, pp.

195–205, 1979.

[163] Z. Petanjek et al., ―Extraordinary neoteny of synaptic spines in the human

prefrontal cortex,‖ Proc. Natl. Acad. Sci., vol. 108, no. 32, pp. 13281–13286,

2011.

[164] J. Y. Hua and S. J. Smith, ―Neural activity and the dynamics of central

nervous system development,‖ Nat. Neurosci., vol. 7, no. 4, p. 327, 2004.

[165] P. Boksa, ―Abnormal synaptic pruning in schizophrenia: Urban myth or

reality?,‖ J. Psychiatry Neurosci. JPN, vol. 37, no. 2, p. 75, 2012.

[166] D. Das, A. Kole, S. Mukhopadhyay, and P. Chakrabarti, ―Empirical

Analysis of Binary Search Worst Case on Two Personal Computers Using

Curve Estimation Technique,‖ Int. J. Eng. Manag. Res., vol. 5, no. 5, pp. 304–

311, 2015.

[167] A. L. Jacobson, ―Auto-threshold peak detection in physiological signals,‖ in

Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd

Annual International Conference of the IEEE, 2001, vol. 3, pp. 2194–2195.

[168] N. M. Wagarachchi and A. S. Karunananda, ―A Novel Technique for

Optimizing the Hidden Layer Architecture in Artificial Neural Networks,‖ Am.

Int. J. Res. Sci. Technol. Eng. Math., vol. 4, no. 1, pp. 01–06, 2013.

[169] ―UCI Machine Learning Repository.‖ [Online]. Available:

https://archive.ics.uci.edu/ml/index.php. [Accessed: 11-Apr-2018].

[170] O. L. Mangasarian, R. Setiono, and W. H. Wolberg, ―Pattern recognition via

linear programming: Theory and application to medical diagnosis,‖ Large-

Scale Numer. Optim., pp. 22–31, 1990.

157

[171] K. P. Bennett and O. L. Mangasarian, ―Robust linear programming

discrimination of two linearly inseparable sets,‖ Optim. Methods Softw., vol. 1,

no. 1, pp. 23–34, 1992.

[172] W. H. Wolberg and O. L. Mangasarian, ―Multisurface method of pattern

separation for medical diagnosis applied to breast cytology.,‖ Proc. Natl. Acad.

Sci., vol. 87, no. 23, pp. 9193–9196, 1990.

[173] L. Prechelt, PROBEN 1: a set of benchmarks and benchmarking rules for

neural network training algorithms. Univ., Fak. für Informatik, 1994.

[174] ―UCI Machine Learning Repository: Credit Approval Data Set.‖ [Online].

Available: http://archive.ics.uci.edu/ml/datasets/Credit+Approval. [Accessed:

10-Feb-2018].

[175] ―UCI Machine Learning Repository: Pima Indians Diabetes Data Set.‖

[Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes. [Accessed: 10-

Feb-2018].

[176] ―UCI Machine Learning Repository: ser Knowledge Modeling Data

(Students‘ Knowledge Levels on DC Electrical Machines) Data Set.‖ [Online].

Available:

http://archive.ics.uci.edu/ml/datasets/ser+Knowledge+Modeling+Data+%28St

udents%27+Knowledge+Levels+on+DC+Electrical+Machines%29.

[Accessed: 10-Feb-2018].

[177] D. Mo, ―A survey on deep learning: one small step toward AI,‖ Dept

Comput. Sci. Univ N. M. USA, 2012.

[178] Y. LeCun, Y. Bengio, and G. Hinton, ―Deep learning,‖ Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[179] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, ―A survey of

deep neural network architectures and their applications,‖ Neurocomputing,

vol. 234, pp. 11–26, 2017.

[180] Y. Bengio, ―Learning deep architectures for AI,‖ Found. Trends® Mach.

Learn., vol. 2, no. 1, pp. 1–127, 2009.

[181] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016.

[182] J. Schmidhuber, ―Deep learning in neural networks: An overview,‖ Neural

Netw., vol. 61, pp. 85–117, 2015.

[183] S. Singaravel, J. Suykens, and P. Geyer, ―Deep-learning neural-network

architectures and methods: Using component-based models in building-design

energy prediction,‖ Adv. Eng. Inform., vol. 38, pp. 81–90, 2018.

[184] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, ―Convolutional

neural networks: an overview and application in radiology,‖ Insights Imaging,

vol. 9, no. 4, pp. 611–629, 2018.

[185] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ―Gradient-based learning

applied to document recognition,‖ Proc. IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[186] K. O‘Shea and R. Nash, ―An introduction to convolutional neural networks,‖

ArXiv Prepr. ArXiv151108458, 2015.

[187] J. Wu, ―Introduction to Convolutional Neural Networks,‖ p. 31, May 2017.

158

[188] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ―A Survey of the Recent

Architectures of Deep Convolutional Neural Networks,‖ p. 62.

[189] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, ―Activation

Functions: Comparison of trends in Practice and Research for Deep Learning,‖

ArXiv Prepr. ArXiv181103378, 2018.

[190] G. E. Hinton, ―Deep belief networks.‖ Scholarpedia, 4(5):5947, 2009.

[191] A. Khan, A. Zameer, T. Jamal, and A. Raza, ―Deep Belief Networks Based

Feature Generation and Regression for Predicting Wind Power,‖ ArXiv Prepr.

ArXiv180711682, 2018.

[192] T. K. Gupta and K. Raza, ―Optimizing Deep Neural Network Architecture:

A Tabu Search Based Approach,‖ p. 15, 2018.

[193] A. Aly, D. Weikersdorfer, and C. Delaunay, ―Optimizing Deep Neural

Networks with Multiple Search Neuroevolution,‖ ArXiv190105988 Cs, Jan.

2019.

[194] ―uci machine learning repository - Google Search.‖ [Online]. Available:

https://www.google.lk/webhp?sourceid=chrome-

instant&ion=1&espv=2&ie=UTF-

8#q=uci%20machine%20learning%20repository. [Accessed: 21-Jul-2016].

[195] ―Banknote aurhentication Data set.‖ [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/banknote+authentication#. [Accessed:

23-Jan-2018].

[196] ―UCI Machine Learning Repository: Cardiotocography Data Set.‖ [Online].

Available: https://archive.ics.uci.edu/ml/datasets/cardiotocography. [Accessed:

25-Feb-2018].

[197] ―UCI Machine Learning Repository: Climate Model Simulation Crashes

Data Set.‖ [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Climate+Model+Simulation+Crashes.

[Accessed: 10-Feb-2018].

[198] ―UCI Machine Learning Repository: Glass Identification Data Set.‖

[Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Glass+Identification. [Accessed: 07-

Feb-2018].

[199] ―https://archive.ics.uci.edu/ml/machine-learning-

databases/haberman/haberman.names.‖ [Online]. Available:

https://archive.ics.uci.edu/ml/machine-learning-

databases/haberman/haberman.names. [Accessed: 23-Jan-2018].

[200] R. A. Fisher, ―The use of multiple measurements in taxonomic problems.‖

Annual Eugenics 7, 1936.

[201] R. O. Duda, P. E. Hart, and D. G. Stork, ―Pattern classification and scene

analysis 2nd ed,‖ Ed Wiley Intersci., 1995.

[202] S. B. Thrun et al., ―The MONK‘s Problems A Performance Comparison of

Different Learning Algorithms,‖ 1991.

[203] I. King, Neural information processing. Springer Science & Business Media,

2006.

[204] M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik,

and S. Zak, ―A Complete Gradient Clustering Algorithm for Features Analysis

159

of X-ray Images,‖ Inf. Technol. Biomed. Ewa Pietka Jacek Kawa Eds

Springer-Verl. Berl.-Heidelb., pp. 15–24, 2010.

[205] ―UCI Machine Learning Repository: Heart Disease Data Set.‖ [Online].

Available: http://archive.ics.uci.edu/ml/datasets/Heart+Disease. [Accessed: 10-

Feb-2018].

[206] ―UCI Machine Learning Repository: Statlog (Heart) Data Set.‖ [Online].

Available: http://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29.

[Accessed: 10-Feb-2018].

[207] J. E. Da Silva, J. M. De Sá, and J. Jossinet, ―Classification of breast tissue by

electrical impedance spectroscopy,‖ Med. Biol. Eng. Comput., vol. 38, no. 1,

pp. 26–30, 2000.

[208] J. Jossinet, ―Variability of impedivity in normal and pathological breast

tissue,‖ Med. Biol. Eng. Comput., vol. 34, no. 5, pp. 346–350, 1996.

[209] ―UCI Machine Learning Repository: Yeast Data Set.‖ [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Yeast. [Accessed: 10-Feb-2018].

160

Appendix A

DATA SETS

To assess the effectiveness of the proposed method in determining the hidden layer

architecture, the number of simulations carried out in different fields. In order to

justify the theory, 33 data sets were selected from different 19 domains. All the

samples chosen are real world classification problems, available in the Machine

learning repository, University of California, Irvine [194], [173]. All the

experiments were done for fully connected feedforward neural networks on

supervised learning.

The different data sets from different domains were chosen to discuss the various

steps of the approach of the modeling the hidden layer architecture in ANNs. Some

data sets were tested by changing the size of input/output training patterns. The

details of all chosen data sets are discussed here.

1. Banknote Authentication Data Set (Banknote)

The data set describes the information of 1372 banknotes, where 610 are genuine

and 762 are counterfeit. By using digitalization, industrial camera 400x400 pixel

images were taken and wavelet transformation tools were used to extract 4 features,

Variance, Skewness, Kurtosis and Entropy. True banknotes have identified and

labeled as 1 and others labeled as 0 [195].

2. Breast Cancer Wisconsin (Cancer)

The data set was introduced by Dr. William H. Wolberg of the University of

Wisconsin Hospital, Madison to diagnose the breast cancer and classify that a tumor

as either benign or malignant level [170],[171],[172]. The decision makes based on

the information gathered by microscopic examination of 9 features.

The data set contains 699 continuous examples, where 65.5% are in benign stage

[173]. To examine the performance of the proposed method different 4 types of data

sets, namely Cancer I, Cancer II, Cancer III and Cancer IV considered with distinct

161

testing and training sets. The first group contains 75% of data in the training set

while other 25% uses for testing purpose. The 2
nd

 set considered with 50% data in

training and the 3
rd

 set contains 25% as training data. Finally, a very small group of

data (20 sets) trained and tested the performance.

3. Credit Card Approval Data Set (Card)

A database to predict the approval or rejection of credit card to the applicants is

presented here. Each example represents the details supplied by a real applicant and

output shows whether the corresponding organization granted a credit card to the

client or not. The decision makes based on 51 inputs with continuous values and

690 examples. Out of 690 applicants 44.5% show positive output [174]. Four

different networks architectures Card I, Card II, Card III and Card IV were designed

from this data.

4. Cardiotocography Data Set (Cardio)

 This is a large data set, which consists of measurements of 2126 samples of fetal

heart rate (FHR) and uterine contraction (UC) features on cardiotocograms. Each

sample contains 21 attributes to classify the fetal class defined as Normal (0),

Suspect (+1) or Pathologic (-1). From the whole set 77.8% and 13.9% were

classified as normal and suspect respectively, while the rest are recognized as

pathologic [196].

5. Climate Model Simulation Crashes Data Set (Climate)

This data set uses to predict the simulation outcome, such as success or failure on

given Latin hypercube samples of 18 climate model input parameter values. There

are 540 samples in the data set and 494 are success and 46 are fail [197].

6. Pima Indians Diabetes Data Set (Diabetes)

This data was originally created by the National Institute of Diabetes and Digestive

and Kidney Diseases to binary classification on whether a patient has diabetes.

There are records of 768 patients and out of 500 ( 65.1%) shown positive for

diabetes. All the patients here are females of above 21 years old of Pima Indian

162

heritage. Four different networks, namely Diabetes I, II, III and IV carry 75%,

50%, 25%, and 2% samples respectively created for testing [175].

7. Solar Flare Data Set (Flare)

This database has been created to predict the solar flare which will occur in next 24

hours by using the information on past 24 hour period. In the set there are 1389

attributes and results are classified in three different classes, common flare,

moderate flare and severe flare [173]. There are 10 attributes in the input set. First 3

inputs are given as the alphabetical characters whilst rest are integers. Before the

training process, alphabetic characters converted to integers.

8. Glass Identification Data Set (Glass)

This is a classification dataset to identify the types of glass was motivated by

criminological investigation. It suggests that, if it correctly identified, at the scene of

the crime, the glass left can be used as evidence. The data set contains 10 attributes

including Id number. In the classification glasses are distributed 7 different classes

[198].

9. Heberman’s Survival Data Set (Heberman)

The survival of patients who had undergone surgery for breast cancer is interpreted

by this data set. The survey was conducted in 306 patients of the University of

Chicago‘s billing hospital in between 1958 and 1970. Two survival classes were

defined. 1) The patient survived 5 years or longer. 2) The patient died within 5

years. It was reported that 225 patients belonged to the first class 81 in the second

class [199].

10. Iris Plant Data Set (Iris)

The Iris plant data sets [200], [201] classify 150 iris flowers on the basis of four of

their independent features namely sepal length, sepal width, petal length and petal

width. The output was desired to one the 3 classes Setosa, Versicolour or Virginica.

Each class contains 50 instances.

163

11. User Knowledge Modeling Data Set (Knowledge)

The dataset is about the users' learning activities and knowledge levels on subjects

of DC Electrical Machines. Information of 403 users with 5 attributes including the

study time and exam performance considered for analysis. According to the

information, uses knowledge was classified into four classes, very low, low, middle

and high [176].

12. MONK’s Problems Data Set (Monks)

The Monk‘s problem which was generated by Sebastian Thrun [202], contains a

discrete data set which was created to classify the appearance of a robot. The

appearance of each robot was described by 6 attributes, namely robot‘s head shape,

body shape, is smiling (yes/no), holding item (sward/balloon/flag), Jacket colour

and is a wearing a tie (yes/no). By analyzing these data it decides whether or not the

given robot belongs to a one of the two classes.

Three different data sets from the same domain, but with different features were

created. For example; in the Monk‘s 1 data set, head and body shapes are equal or

jacket colour is red. In the third data set jacket colour is green and in addition, it was

added 5% classification noise [203].

13. Seeds Data Set (Seeds)

Seven geometric parameters of the kernel of three different varieties of wheat;

Kama, Rosa and Canadian were given in this data set. There are 70 elements in each

category. The high-quality visualization of the internal kernel structure was detected

using a soft X-ray technique [204].

14. Statlog (Heart) Data Set (Statlog)

This dataset is a heart disease database similar to a database present in the UCI

repository (Heart Disease databases) [205] but in a slightly different form. The main

164

objective of this data is to predict whether or the heart disease is present. 13 inputs

including age, sex are there in this data set. Among 270 patients 150 show absence

in heart disease while other 120 show present [206].

15. Thyroid disease data set

There are several data sets to determine whether a patient referred to the clinic is

hypothyroid. Patients are classified in to three classes: normal (not hypothyroid),

hyper function and subnormal functioning. In this test we chose the data set includes

215 instances with 5 attributes.

16. Breast Tissue (Tissue)

The outcome of the application of electrical impedance spectroscopy in

classification of breast tissue to detect cancer was described in the data set. 10

features were measured in 106 instances and classified them to 6 classes [207],

[208].

17. Yeast Data Set (Yeast)

The main objective of the data is to use 8 attributes to predict the

localizations (called cellular components) of proteins in a yeast's cell where each

protein must be classified into one of nine different cellular components. The output

is given as non-numeric variable and converted them to a numeric. Altogether there

are 1484 instances [209].

165

Appendix B

DETERMINING THE NUMBER OF HIDDEN LAYERS

The illustration of determining peak value of each network is described here. The

table followed by the each figure verified the results.

B.1 Banknote Data Set

The input network of Banknote data set contains 12 hidden layers and 1014 hidden

neurons. Neurons are divided in ascending order as shown in the Table B. 1. The

initial network showed 100% accuracy. The single hidden layer network with 13

hidden neurons gives 0.0% performance. Hence, the peak search algorithm applied

and process ended with 2 hidden layer network as shown in the Figure B. 1. The

experimental results are shown in the Table B. 1. which agrees with the results

obtained by the PSA.

Figure B. 1: Illustration of Banknote problem

166

Table B. 1: Generalization of Banknote Problem

B.2 Cancer Data Sets

Four different datasets were designed from Cancer data set which was described in

the section 6.3.1. The Figure 6.8 illustrates the procedure of determining the number

of layers in the Cancer I problem. Cancer II and III problems also have the same

pattern with lesser generalization. All these sets start with 20 hidden layers and

achieve their best performance at 4 hidden layers (Table B.2). The Cancer IV,

which has only 20 sets in the training set always shows poor generalization

comparatively other 3 sets. Figure B. 2 shows how it achieves the number of hidden

layers in the Cancer IV problem. The Table B.3 verifies the results

Table B. 2: Generalization of Cancer I-III problems

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 12

Generalization 0.0 100 100 100 100 100 100 100 100 100 100

No. of hidden

neurons 13 26 39 52 65 78 91 104 117 130 152

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 12 20

Cancer I 525 97.7 97.7 98.9 99.4 99.4 96.0 94.3 95.4 62.6 62.6 62.6 62.6

Cancer II 350 97.1 97.4 97.7 98.6 97.7 97.7 65.6 65.6 65.6 65.6 65.6 65.6

Cancer III 175 94.7 94.7 94.7 95.0 94.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8

167

Figure B. 2: Illustration of Cancer IV problem

Table B. 3: Generalization of Cancer IV problem

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 12 20

Cancer IV 20 63.5 66.7 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4

168

B.2 Card Data Sets

Each of the card problem has 51 attributes. Relative to the Cancer problems, they

show poor generalization. The maximum generalization (88.1%) obtained for Card I

problem with 6 hidden layers. However, like Cancer IV, Card IV which is having

only one hidden neuron in each hidden layer show poor performance as the they do

not have sufficient neurons to learn data. The following Figure B. 3 illustrate the

method of obtaining the most suitable number of hidden layers in Card I problem.

The performance of Card II is lesser than Card I, but it also has the same pattern (

Table B. 4)

Figure B. 3: Illustration of Card I problem

Table B. 4: Generalization of Card I – II problem

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Card I 518 81.4 81.4 84.9 86.6 86.6 88.1 53.4 53.4 53.4 53.4 53.4 53.4

Card II 345 75.1 76.5 84.6 84.6 85.8 87.2 55.1 55.1 55.1 55.1 55.1 55.1

169

The illustration of achieving number of hidden layers of the most appropriate

architecture of Card III problem is described in the below Figure B. 4. This process

also starts with 12 hidden layer network trained by the backpropagation algorithm.

Initially, network shows 54.8% generalization. The network achieves its best

performance with 5 hidden layers and generalization 84.8%. The Table B. 5

confirms this result.

Figure B. 4: Illustration of Card III problem

Table B. 5: Generalization of Card III problem

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Card III 172 68.7 75.7 79.1 84.4 84.8 54.8 55.1 54.8 54.8 54.8 54.8 54.8

170

Similar to the Cancer IV, Card IV also show poor performance. The highest

generalization (65.7%) gives the 3 layer network (Figure B. 5, Table B. 6).

Figure B. 5: Illustration of Card IV problem

Table B. 6: Generalization of Card IV problem

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Card IV 20 59.4 62.2 65.7 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55.3

171

B.4 Climate Data Set

The initial network architecture of this set contained 10 hidden layers and 400

hidden neurons which are equally distributed among the hidden layers. The

generalization of the input network was 92.6%. The single hidden layer network

showed 95.6% accuracy. At the it was reduced to 2 hidden layer with generalization

97.8%. The process of obtaining optimal architecture is shown in the Figure B. 6.

Figure B. 6: Illustration of Climate problem

The generalization of all the networks with hidden layers 1-10 were measured and

the results are given in the table. These results verifies the above peak value.

Table B. 7: Generalization of Climate problem

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10

Climate 400 95.6 97.7 97.0 97.0 97.0 92.6 92.6 92.6 92.6 92.6

172

B.5 Flare Data Sets

The procedure of obtaining Flare I is described in the section 6.5.2. Unlike Cancer

and Card problems, Flare set show its highest performance when there are 50%

neurons in the training set. However, Flare I, II and III show there best performance

at 7 hidden layer ANN architecture while highest performance of Flare IV gives it at

6 hidden layers. Process of Flare data sets start with 12 hidden layer networks and

they show that . Hence, the interval [1,6) remove and continue the

procedure. However, from 7 layers all the networks give same performance.

Therefore, it needs to compute generalization of all the networks which are having

hidden layers 7 – 12. The Figure 6.9, and

Figure B. 7 illustrate the achieving of hidden layers of Flare I and II.

The data of Table B. 8 depicts that Flare III and IV also have the same pattern.

173

Figure B. 7: Illustration of Flare II problem

Table B. 8: Generalization of Flare I – IV problems

Data Set
No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Flare I 800 71.1 74.4 78.2 82.0 80.1 80.1 89.4 89.4 89.4 89.4 89.4 89.4

Flare II 533 81.8 79.2 80.1 83.0 83.5 87.4 92.7 92.7 92.7 92.7 92.7 92.7

Flare III 266 82.5 79.1 83.2 82.8 88.9 82.8 92.1 92.1 92.1 92.1 92.1 92.1

Flare IV 50 68.4 83.1 80.2 81.6 80.7 91.1 91.1 91.1 91.1 91.1 91.1 91.1

B.6 Monk’s Problems

In the Monk‘s problem there are 3 different data sets Monk‘s 1, Monk‘s 2 and

Monk‘s 3 which have described in the Appendix 1. The two sets Monk‘s 1 and

Monk‘s 3 perform in a similar pattern. The initial networks of both of them show

100% generalization. The Monk‘s 1 problem started with 10 hidden layers while

Monks‘s 3 started with 12 hidden layers. The total number hidden neurons in both

the sets were 120 which were distributed equally among the hidden layers. At the

end they could reduce to networks with 7 and 6 hidden layers respectively. The

174

process of determining the hidden layers of these two sets are same as that of the

Flare I data set.

However, Monk‘s 2 set shows different behavior. It starts with the network with12

hidden layer which contains 169 hidden neurons distributed arbitrary as shown in

the Table B.. The generalization of the initial network was 67.1%. The data set

shows its highest performance 86.8% with 4 hidden layers. The process of

achieving this is shows in the Figure. The Table B.9 confirms this result

Figure B. 8: Illustration of Monk‘s 2 problem

Table B. 9: Generalization of Monk‘s 2 problems

Data Set

No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10 11 12

Generalization 75.2 81.2 81.2 86.8 85.4 85.9 84.3 67.1 67.1 67.1 67.1 67.1

No. of hidden

neurons
22 20 18 18 17 15 15 14 13 10 5 2

175

B.7 Seeds Data Set

The seeds problem started with 130 hidden neurons distributed with 10 hidden

layers. The generalization of the initial network was 0.0 present. The network which

shows the highest generalization has 7 hidden layers and 52 hidden neurons. The

procedure of obtaining this is shown in the Figure B. 9. The values of the Table B.

10 verifies the results. It shows that until 7 layers generalization increases and then

from the 8 layer onwards it becomes zero.

Figure B. 9: Illustration of Seeds problem

Table B. 10: Generalization of Seeds problem

Data Set
No. of Hidden Layers

1 2 3 4 5 6 7 8 9 10

Seeds 130 77.4 79.2 81.1 79.2 83.0 89.2 90.6 0.0 0.0 0.0

176

B.8 Yeast Data Set

The initial network of this data set contained 12 hidden layers and 1092 hidden

neurons distributed in ascending order. However, at the first step of PSA it showed

that the performance of the single hidden layer network was 100%. Hence, the

process stopped at this stage. Therefore, the best architecture of this problem is

network with 1 hidden layer and 14 hidden neurons [207] .

177

Appendix C

SELECTED CODES

C1. Introduction

This appendix presents the implementation of system while highlighting the most

important functions. The system is developed with MATLAB programming. The

Excel files are used to store the initial data.

C2. Import the data

The raw data are stored in the excel file as shown in the Figure C. 1 below.

Figure C. 1. Raw data in excel worksheet

Firstly import the raw data to Matlab (Figure C. 2) and normalized them (Figure C.

3). However, if the inputs are 0 and 1, it proceeds without normalization.

Figure C. 2: Import raw data from excel

178

Figure C. 3: Normalization of inputs and outputs

After deciding number of layers n , initial weights are randomly generated as

depicted in the Figure C. 4 between layer layer and layer layer. where

 1 2

Figure C. 4: Generate random weights

C3. Backpropagation Algorithm

Now network has created and ready to train by the backpropagation algorithm.

Thus, feed the inputs and obtain the output of each neuron using the codes given in

the Figure C. 5 and compute the output error. Next compute the delta of each neuron

and update the weights (Figure C. 6).

179

Figure C. 5: Calculating error of a training cycle

Figure C. 6: Updating weights using delta values

180

C4. Removing Hidden Neurons

While removing the neurons first it identifies the removable neurons by using the

correlation coefficient of sum of delta value and output error. If there is no

considerable correlation, it assumes correlation is 0. Then neurons which have

infinitesimal delta values are identified as removable neurons which describes in the

Figure C. 7.

Figure C. 7: Identify removal neuron when delta is zero

When there is considerable positive correlation (i.e. CORR_1=1) between

summation of delta values and the output error, neurons with positive delta values

which are very closed to zero are identified as removable neurons Figure C. 8.

Similarly, when correlation is negative, neurons with negative delta values which

are very close to zero are identified as removable neurons.

Figure C. 8: Identify removal neuron when delta is a positive value

181

Then remove the neurons from each layer while merging the similar neurons as

shown in the figures Figure C. 9 and Figure C. 10.

Figure C. 9: Removing unimportant neurons

Figure C. 10: Merging similar neurons

182

Appendix D

PUBLICATIONS

1. N. M. Wagarachchi and A. S. Karunananda, ―Mathematical Modelling of

Hidden Layer Architecture in Artificial Neural Networks", 3
rd

 International

Conference on Information Security and Artificial Intelligence (ISAI 2012)

DOI: 10.7763/IPCSIT.2012.V56.28 IPCSIT vol. 56 IACSIT Press, Singapore,

pp. 154-159, 2012

2. N. M. Wagarachchi and A. S. Karunananda, ―Optimization of multi-layer

artificial neural networks using delta values of hidden layers,‖ in

Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB),

2013 IEEE Symposium on, 2013, pp. 80–86.

3. N. M. Wagarachchi and A.S. Karunananda, ― A Novel Technique for

Optimizing the Hidden Layer Architecture in Artificial Neural Networks‖,

American International Journal of Research in Science, Technology

Engineering and Mathematics, Issue 4, vol. 1, pp 1-6, November 2013.

4. N. M. Wagarachchi and A.S. Karunananda, ―A Theoretical Basis for the

Optimization of Hidden Layer Architecture in Artificial Neural Networks,

HETC symposium 2014, July 2014. (Abstract only)

5. Mihirini Wagarachchi and Asoka Karunananda,‖ Towards a Theoretical Basis

for Modelling Hidden Layer Architecture in Artificial Neural Networks‖, 2
nd

International Conference on Advances Computing, Electronics and

Communication, Switzerland, 2014.

6. N. M. Wagarachchi and A.S. Karunananda, ―Optimization of Artificial Neural

Network Architecture Using Neuroplasticity,‖ Int. Journal of Artificial

Intelligence. vol. 15, no. 1, pp. 112–125, 2017.

7. Mihirini Wagarachchi and Asoka Karunanda ―Modelling Modeling of

Hidden layer Architecture in Multilayer Artificial Neural Networks‖ SLAAI

International Conference on Artificial Intelligence (SLAAI – ICAI – 2018),

University of Moratuwa , Sri Lanka.

