
ANALYZING SOURCE CODE IDENTIFIERS

FOR CODE REUSE

Ponnampalam Pirapuraj

158021B

Thesis submitted in partial fulfilment of the requirements for the
\

3Degree of Master of Science
(? c 5 a

0

LIBRARY
UNIVERSITY CF MORATUWA, SRI LANKA

MORATUWA

Department of Computer Science & Engineering
/ ii 3 /

CJD (lO£>
University of Moratuwa

Sri Lanka

October 2017 ''ooH- 17
iooj\ c o Jt

TH3497

XJHI3497

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement the material previously submitted for a Degree or Diploma in the

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain the material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Candidate

Date P.Pirapuraj

The above candidate has carried out research for the Masters thesis under my
supervision.

Supervisor

\\. 10 .

Date

Dr. Inaika Perera

Acknowledgements

I would like to take this opportunity to acknowledge and extend my heartfelt gratitude

to my supervisor Dr. Indika Perera for his long support and guidance throughout this

project work, He has given me many stimulating suggestions and his valuable

comments have helped me to solve most of the problems during the project

development. Many thanks goes out to our MSc research degree coordinator Dr. A.

Shehan Perera for his dedication and valuable comments and suggestion as a progress

review panel board member. Thanks to another progress review panel board member

Dr. Lochandaka Ranathunga, for his valuable suggestion and comments. Thanks to all

the lecturers at the Faculty of Computer Science and Engineering, University of

Moratuwa, for their valuable advice. Also thanks to my parents, my wife, and brothers,

and friends to give support and motivation.

Abstract

Today a massive amount of source code is available on the Internet and open to serve
as a means for code reuse. Developers can reduce the time cost and resource cost by
reusing these external open source code in their own projects. Even though a number
of Code Search Engines (CSE) are available, finding the most relevant source code is
often challenging. In this research, we proposed a framework that can be used to
overcome the problem faced by developers in code searching and reusing. The
framework starts with the software architecture design in XML format (Class
Diagram), extracts information from the XML file, and then based on the extracted
information, fetches relevant projects using three types of crawler from GitHub,
SourceForge, and GoogleCode. We will have a huge amount of projects by
downloading process using the crawlers and need to find most relevant projects among
them.

In this research, we particularly focus on projects developed using Java language.
Each project will have a number of .java files, and all files will be represented as
Abstract Syntax Trees (AST) to extract identifiers (class names, method names, and
attributes name) and comments from the .java files. Then, on one hand, we will have
the identifiers which are extracted from the XML file (Class diagram), and the other
hand the identifiers and the action words (verbs) extracted from downloaded projects.
Action words are extracted from comments using Part of Speech technique (POS).
These two group of identifiers need to be analyzed for matching, if the identifiers are
matched, an amount of marks will be given to these identifiers, likewise marks will
be added together and then if the total marks is greater than 50%, the .java file belongs
to these identifier will be suggested as relevant code. Otherwise, synonyms of the
identifiers will be discovered using WordNet, and the matching process will be
repeated for the synonyms. For the composite identifiers, camel case splitter is used to
separate these words. If the programmers do not follow camel case naming convention,
N-gram technique is used to separate these word. The Stanford Spellchecker is used to
identify abbreviated words. Evaluation of our developed framework resulted in
95.25% of average accuracy of four subsystem [project downloader (100%), identifier
analyzer (94%), word finder (87%), and comments analyzer (100%)] accuracy.

Keywords— Software Architecture, WordNet, N-gram technique, Part of Speech
Tagging, Camel Splitter, and Abstract Syntax Tree.

Table of Contents

Declaration...............
A ckno wl edgem ents...
Abstract....................
List of Figures..........
List of Tables...........
List of Abbreviations

i

11

111

vi 1

IX

x

1 Introduction......................................
1.1 Source code Reuse.......................
1.2 Code Search Engine (CSE)..........
1.3 Problem Statement.......................
1.4 Research Question and Objectives
1.5 Contribution.................................

1

1

4

5

7

8

1.6 Challenges........................
1.7 Organization of the Thesis

9
10

2 Literature Review 11
2.1 Code searching....................................
2.2 GitHub API Integration......................

2.2.1 GitHub API................................
2.2.2 Search API and repository search
2.2.3 Crawler, and Java JSOUP API....

2.3 NLP techniques, APIs and tools..........
2.3.1 N-gram Technique......................
2.3.2 Dynamic Time Warping.............
2.3.3 Stanford SpellChecker................
2.3.4 WordNet....................................
2.3.5 Stanford POS tagger...................

11
19
19
23
27
32
33
34
36
37
40

IV

422.4 Identifiers and comments analyzing................. .

2.5 Analyzing our research with related researches 47

503 Research methodology and Proposed Framework Architecture

3.1 Research Methodology...

3.1 XML Parser...

3.2 GitHub API Integration..

3.2.1 Java project names dumber...

3.2.2 Java class names dumber..

3.3 Crawlers and Decompressor...

3.4 Abstract Syntax Tree..

3.5 Identifier Splitter..

3.6 Spell Checker and Word Finder..

3.6.1 Spell checker for Good Identifiers..

3.6.2 Word Finder and Spell checker for Bad Identifiers............

3.7 Action word extractor for comments...

3.8 Matching and marks giving..

3.9 Summary of all module and process..

50
52
54
54
55
56
57
61
63
64
65
67
69
70

744 Implementation..

4.1 Implementation of XML Parser...

4.2 Integration of GitHub API..

4.2.1 Implementation of Java project names dumber............

4.2.1 Implementation of Java class names dumber...............

4.3 Implementation of Crawler and Decompressor.....................

4.4 Abstract Syntax Tree and Identifier Splitter...........................

4.4.1 Implementation of Abstract Syntax Tree.......................

4.4.2 Implementation of Identifier Splitter.............................

4.5 Implementation of Spell Checker and Word Finder..............

4.5.1 Implementation of Spell Checker for Good Identifiers

75

78

79

82

84

87

87

89

90

91

V

924.5.2 Spell Checker and Word Finder for Bad Identifiers

4.6 Implementation of Matching and Rating........................ 93

965 Evaluation...
5.1 Performance of crawlers...
5.2 Performance of Spell Checker and word finder...............

5.2.1 Performance of Spell Checker for Good Identifiers.
5.2.2 Performance of Spell Checker for Good Identifiers.

5.3 Performance of Extraction of action verb from comments

97
98

100
103
104

1066 Conclusions
1076.1 Conclusion
1106.2 Limitation and Future Work
1106.2.1 Limitation of our work
1116.2.2 Future work

112Reference

VI

List of Figures

6Figure 1.1: Overview of our System...

Figure 2.1: TDCS Process...

Figure 2.2: CodeGenie Search View..

Figure 2.3: Architecture of the JBender Prototype..

Figure 2.4: Overview of GitHub page..

Figure 2.5: Repository in GitHub..

Figure 2.6: GitHub API implemented System overview......................................

Figure 2.7: URL to access all java repository names and all .java file names in

GitHub and its details...

Figure 2.8: Client errors 1..

Figure 2.9: Client errors 2..

Figure 2.10: Client errors 3..

Figure 2.11: The basic crawler architecture..

Figure 2.12: Distributing the basic crawl architecture...

Figure 2.13: Overview of JSOUP package...

Figure 2.14: Time alignment of two time-dependent sequences..........................

Figure 2.15: Composite identifiers recognition...

Figure 2.16: Online Version of Stanford SpellChecker...

Figure 2.17: A WordNet Noun Tree..

Figure 2.18: Taggest list and example...

Figure 3.1: Overview of our System...

Figure 3.2: Web graph joined by a link...

Figure 3.3: Abstract Syntax Tree example..

Figure 3.4: Overview of our proposed algorithm...

Figure 4.1: Example of XML Parser..

Figure 5.1: Result of downloading relevant projects..

Figure 5.2: Result of Connected and Single Words in Identifiers.......................

12
15
18
20
20
22

24
26
26
26
29
31
32
34
34
37
40
41
52
57
61
67
77
99

102

VII

Figure 6.1: Accuracy of all Modules 109

VIII

List of Tables

24Table 2.1: The parameters used in Search API Query.....................

Table 2.2: The search qualifiers used in query...............................

Table 5.1: Result of downloading relevant projects........................

Table 5.2: Sample result of Identifiers...

Table 5.3: Sample result of splitting and identifying the real words

Table 5.4: Sample result of rating the project.................................

25

98

101

105

105

IX

List of Abbreviations

Code Search EngineCSE

Abstract Syntax TreeAST

Dynamic Time WarpingDTW

Application Programming InterfaceAPI

Subversion (Source code Management)SVN

XML Extensible Markup Language

DOM Document Object Model

Natural Language ProcessingNLP

Test Driven code SearchingTDCS

Small and Medium EnterpriseSME

AQE Automatic Query Expansion

Scalable Vector GraphicsSVG

Structure Semantic IndexingSSI

JavaScript Object NotationJSON

Method Invocation SequenceMIS

Abstract Syntax TreeAST

X

