
ANALYZING SOURCE CODE IDENTIFIERS

FOR CODE REUSE

Ponnampalam Pirapuraj

158021B

Thesis submitted in partial fulfilment of the requirements for the
\

3Degree of Master of Science
(? c 5 a

0

LIBRARY
UNIVERSITY CF MORATUWA, SRI LANKA

MORATUWA

Department of Computer Science & Engineering
/ ii 3 /

CJD (lO£>
University of Moratuwa

Sri Lanka

October 2017 ''ooH- 17
iooj\ c o Jt

TH3497

XJHI3497

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement the material previously submitted for a Degree or Diploma in the

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain the material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Candidate

Date P.Pirapuraj

The above candidate has carried out research for the Masters thesis under my
supervision.

Supervisor

\\. 10 .

Date

Dr. Inaika Perera

Acknowledgements

I would like to take this opportunity to acknowledge and extend my heartfelt gratitude

to my supervisor Dr. Indika Perera for his long support and guidance throughout this

project work, He has given me many stimulating suggestions and his valuable

comments have helped me to solve most of the problems during the project

development. Many thanks goes out to our MSc research degree coordinator Dr. A.

Shehan Perera for his dedication and valuable comments and suggestion as a progress

review panel board member. Thanks to another progress review panel board member

Dr. Lochandaka Ranathunga, for his valuable suggestion and comments. Thanks to all

the lecturers at the Faculty of Computer Science and Engineering, University of

Moratuwa, for their valuable advice. Also thanks to my parents, my wife, and brothers,

and friends to give support and motivation.

Abstract

Today a massive amount of source code is available on the Internet and open to serve
as a means for code reuse. Developers can reduce the time cost and resource cost by
reusing these external open source code in their own projects. Even though a number
of Code Search Engines (CSE) are available, finding the most relevant source code is
often challenging. In this research, we proposed a framework that can be used to
overcome the problem faced by developers in code searching and reusing. The
framework starts with the software architecture design in XML format (Class
Diagram), extracts information from the XML file, and then based on the extracted
information, fetches relevant projects using three types of crawler from GitHub,
SourceForge, and GoogleCode. We will have a huge amount of projects by
downloading process using the crawlers and need to find most relevant projects among
them.

In this research, we particularly focus on projects developed using Java language.
Each project will have a number of .java files, and all files will be represented as
Abstract Syntax Trees (AST) to extract identifiers (class names, method names, and
attributes name) and comments from the .java files. Then, on one hand, we will have
the identifiers which are extracted from the XML file (Class diagram), and the other
hand the identifiers and the action words (verbs) extracted from downloaded projects.
Action words are extracted from comments using Part of Speech technique (POS).
These two group of identifiers need to be analyzed for matching, if the identifiers are
matched, an amount of marks will be given to these identifiers, likewise marks will
be added together and then if the total marks is greater than 50%, the .java file belongs
to these identifier will be suggested as relevant code. Otherwise, synonyms of the
identifiers will be discovered using WordNet, and the matching process will be
repeated for the synonyms. For the composite identifiers, camel case splitter is used to
separate these words. If the programmers do not follow camel case naming convention,
N-gram technique is used to separate these word. The Stanford Spellchecker is used to
identify abbreviated words. Evaluation of our developed framework resulted in
95.25% of average accuracy of four subsystem [project downloader (100%), identifier
analyzer (94%), word finder (87%), and comments analyzer (100%)] accuracy.

Keywords— Software Architecture, WordNet, N-gram technique, Part of Speech
Tagging, Camel Splitter, and Abstract Syntax Tree.

Table of Contents

Declaration...............
A ckno wl edgem ents...
Abstract....................
List of Figures..........
List of Tables...........
List of Abbreviations

i

11

111

vi 1

IX

x

1 Introduction......................................
1.1 Source code Reuse.......................
1.2 Code Search Engine (CSE)..........
1.3 Problem Statement.......................
1.4 Research Question and Objectives
1.5 Contribution.................................

1

1

4

5

7

8

1.6 Challenges........................
1.7 Organization of the Thesis

9
10

2 Literature Review 11
2.1 Code searching....................................
2.2 GitHub API Integration......................

2.2.1 GitHub API................................
2.2.2 Search API and repository search
2.2.3 Crawler, and Java JSOUP API....

2.3 NLP techniques, APIs and tools..........
2.3.1 N-gram Technique......................
2.3.2 Dynamic Time Warping.............
2.3.3 Stanford SpellChecker................
2.3.4 WordNet....................................
2.3.5 Stanford POS tagger...................

11
19
19
23
27
32
33
34
36
37
40

IV

422.4 Identifiers and comments analyzing................. .

2.5 Analyzing our research with related researches 47

503 Research methodology and Proposed Framework Architecture

3.1 Research Methodology...

3.1 XML Parser...

3.2 GitHub API Integration..

3.2.1 Java project names dumber...

3.2.2 Java class names dumber..

3.3 Crawlers and Decompressor...

3.4 Abstract Syntax Tree..

3.5 Identifier Splitter..

3.6 Spell Checker and Word Finder..

3.6.1 Spell checker for Good Identifiers..

3.6.2 Word Finder and Spell checker for Bad Identifiers............

3.7 Action word extractor for comments...

3.8 Matching and marks giving..

3.9 Summary of all module and process..

50
52
54
54
55
56
57
61
63
64
65
67
69
70

744 Implementation..

4.1 Implementation of XML Parser...

4.2 Integration of GitHub API..

4.2.1 Implementation of Java project names dumber............

4.2.1 Implementation of Java class names dumber...............

4.3 Implementation of Crawler and Decompressor.....................

4.4 Abstract Syntax Tree and Identifier Splitter...........................

4.4.1 Implementation of Abstract Syntax Tree.......................

4.4.2 Implementation of Identifier Splitter.............................

4.5 Implementation of Spell Checker and Word Finder..............

4.5.1 Implementation of Spell Checker for Good Identifiers

75

78

79

82

84

87

87

89

90

91

V

924.5.2 Spell Checker and Word Finder for Bad Identifiers

4.6 Implementation of Matching and Rating........................ 93

965 Evaluation...
5.1 Performance of crawlers...
5.2 Performance of Spell Checker and word finder...............

5.2.1 Performance of Spell Checker for Good Identifiers.
5.2.2 Performance of Spell Checker for Good Identifiers.

5.3 Performance of Extraction of action verb from comments

97
98

100
103
104

1066 Conclusions
1076.1 Conclusion
1106.2 Limitation and Future Work
1106.2.1 Limitation of our work
1116.2.2 Future work

112Reference

VI

List of Figures

6Figure 1.1: Overview of our System...

Figure 2.1: TDCS Process...

Figure 2.2: CodeGenie Search View..

Figure 2.3: Architecture of the JBender Prototype..

Figure 2.4: Overview of GitHub page..

Figure 2.5: Repository in GitHub..

Figure 2.6: GitHub API implemented System overview......................................

Figure 2.7: URL to access all java repository names and all .java file names in

GitHub and its details...

Figure 2.8: Client errors 1..

Figure 2.9: Client errors 2..

Figure 2.10: Client errors 3..

Figure 2.11: The basic crawler architecture..

Figure 2.12: Distributing the basic crawl architecture...

Figure 2.13: Overview of JSOUP package...

Figure 2.14: Time alignment of two time-dependent sequences..........................

Figure 2.15: Composite identifiers recognition...

Figure 2.16: Online Version of Stanford SpellChecker...

Figure 2.17: A WordNet Noun Tree..

Figure 2.18: Taggest list and example...

Figure 3.1: Overview of our System...

Figure 3.2: Web graph joined by a link...

Figure 3.3: Abstract Syntax Tree example..

Figure 3.4: Overview of our proposed algorithm...

Figure 4.1: Example of XML Parser..

Figure 5.1: Result of downloading relevant projects..

Figure 5.2: Result of Connected and Single Words in Identifiers.......................

12
15
18
20
20
22

24
26
26
26
29
31
32
34
34
37
40
41
52
57
61
67
77
99

102

VII

Figure 6.1: Accuracy of all Modules 109

VIII

List of Tables

24Table 2.1: The parameters used in Search API Query.....................

Table 2.2: The search qualifiers used in query...............................

Table 5.1: Result of downloading relevant projects........................

Table 5.2: Sample result of Identifiers...

Table 5.3: Sample result of splitting and identifying the real words

Table 5.4: Sample result of rating the project.................................

25

98

101

105

105

IX

List of Abbreviations

Code Search EngineCSE

Abstract Syntax TreeAST

Dynamic Time WarpingDTW

Application Programming InterfaceAPI

Subversion (Source code Management)SVN

XML Extensible Markup Language

DOM Document Object Model

Natural Language ProcessingNLP

Test Driven code SearchingTDCS

Small and Medium EnterpriseSME

AQE Automatic Query Expansion

Scalable Vector GraphicsSVG

Structure Semantic IndexingSSI

JavaScript Object NotationJSON

Method Invocation SequenceMIS

Abstract Syntax TreeAST

X

Chapter 1

Introduction

Source code reuse positively increases the productivity of the development team, and

overall quality of the resulting software. Currently, the amount of open source code

available on the Internet is enormous. For example, Sourceforge.net [1], the world’s

most popular website for open Source software management, hosts about 179,518

projects and has over two million registered users and a large number of anonymous

users. As a result of the enormous amounts of open source code available on the

Internet, several code search engines (CSE) such as Google code Search [2], Krugle

[3], Koders [4], and Codase [5] were developed to efficiently search for relevant code

examples. However, obtaining the most relevant source code remains to be

challenging. This chapter gives an introduction to the research while describing the

problem domain and the developer’s challenges when trying code reuse.

This chapter gives an introduction to the research background while describing the

problem domain and the challenge faced by the developers when they are trying to

reuse the source code. Section 1.1 describes the problems and challenges faced by

developers. Section 1.2 describe the process of code search and its challenges in small

software companies. Section 1.3 describes a possible solution for the challenges faced

by developers. Finally section 1.4 describes the contribution of this research.

1.1 Source code Reuse

Today, the competition among the Software companies are very high, because of big

number of companies, huge amount of intelligent staff, and the latest technologies.

When software architecture enter to development process, the developer cannot start

from scratch, they need to import a sample source code and the libraries in their

1

projects. Open source code available on the Internet has become a common platform

for sharing source code. Programmers often prefer to reuse the design of code

examples or adapt code examples from existing open source projects rather than

discovering usage patterns by digging into documents. Currently, the amount of open

source code available on the Internet is enormous. As we denoted earlier,

Sourceforge.net [1], the world’s most popular website for open source software

development, hosts about 179,518 projects and has over two million registered users

and a large number of anonymous users. GitHub [6], hosts about more than 5 million

open Source projects. As well as GoogleCode [2] also having a massive amount of

projects. Research in software engineering has shown that software reuse positively

affects the competitiveness of an organization: the productivity of the development

team is increased, the time-to-market is reduced, and the overall quality of the resulting

software is improved [7]. Today’s code repositories on the Internet provide a large

number of reusable software libraries with a variety of functionality. The study results

indicate that third-party code reuse plays a central role in modem software

development and that reuse of software libraries is the predominant form of reuse. It

shows that most of today’s software systems consist to a considerable fraction of code

reused from software libraries [7]. Therefore, code reuse is very important task in

software development.

Software reuse offers a considerable advantage in time and monetary costs. The

advantage of code reuse in terms of time cost can be analyzed as follows. If a developer

writes a program from scratch, he needs to test every piece of written code, identify

errors and correct them. If the targeted task is not achieved, he would need to repeat

the entire process from the beginning. Additionally the correctness of the code depends

entirely on the developer. When reusing related source code the developer does not

have to face the above described scenario. The advantage of code reuse in terms of

monetary cost can be analyzed as follows. If a developer writes a program from

scratch, he needs extra days or month, in which Situation the company has to pay

additional salary to staff, but the company cannot get extra money from a client, so
2

company faces money lose in particular projects. As well as the company needs to

spend an amount of money to physical resource, for an example if they use software

reuse process, consider a particular project would be finished in 30 days, if they do not

follow software reuse process, it would take 60 days to finish, in this situation the

company needs to pay following additional bills, internet connection bill, current bill,

food bill, and water bill as well as if the building is rent, the company has to pay

additionally one month rent. So software reuse reduces these money costs.

In addition to cost reduction described in the above paragraph, software reuse offers

benefits on following aspects. In terms of the quality of the software can be analyzed

as follows. Most of the time the developers are uploading the finalized project into the

GitHub [6] or SourceForge [1], they are uploading the projects after checking all

errors, but few errors may be included. If they use the projects in their own project, the

quality of their project will be increased. In terms of developer’s knowledge will be

analyzed as follows. When the developer uses external projects in their own projects,

he needs to go through the Source coding, while he will study the different coding

style, different naming convention style, special programming technique; for an

example, for the same task, different developers will write the code differently as well

as number of lines of code will be different, they try to reduce the number of lines of

code, so when they go through the code, they will learn the coding technique, so their

knowledge will be increased. When we consider the company market will be analyzed

as follows. When the developer does the source code reuse task, he will finish the

projects within short period with very high-efficiency product, so the client of the

company will be very happy, and trust on the company will be increased, so again the

clients will not go to the other place for the needs, directly they will give all Software

problem to the company. As well as when other clients here the company product and

short period process, they also will contact the company to their work, in this way their

market will be increased.

3

1.2 Code Search Engine (CSE)

Code Search Engines (CSE) is a software system that is designed to search source code

on the World Wide Web. Google code search [2] (is a free beta product from Google

which debuted in Google Labs on October 5, 2006, allowing web users to search for

open-source code on the Internet. Features included the ability to search using

operators, namely language:, package:, license: and file)[8], Ohloh [9]: (Ohloh code

says it is one of the largest and more comprehensive code search engines with more

than 10+ billion lines of code indexed and updated FOSS software directories. Ohloh

[9] is the upgraded face ofKoders.com and is also freely available and freely editable

by its community. It indexes all text files for search and has syntax highlighting support

for 43 programming languages.)[10], Krugle [3] (is an open Source search portal

which taps into open Source search repositories like Apache, JavaDocs, and

SourceForge [1] among others. You can search for code in C++, Java, Perl, Python,

SQL, Ruby, XML, HTML etc. It is powered by OpenSearch. Krugle [3] also has an

advanced search feature that can help you narrow down to the right APIs, libraries,

sample code or documentation. From the results page, you can browse to the project

developed with the code.)[10].

Likewise, few other code search engines, such as Koders [4], and Codase [5] are

developed to search for relevant code examples (i.e., Source files containing a search

term). These CSEs accept queries such as the names of classes or methods of

Application Programming Interfaces (API) as a keyword which needs to represent the

whole meaning of the context and search in CVS or SVN repositories of available open

Source projects on hosts such as Sourceforge [1] and GitHub [6]. Today’s code search

engines, for example, Google, Koders [4], and Krugle [3], offer only a keyword-based

search and file-level retrieval, and generally, have limited utility in looking for

appropriate code fragments for a particular application. The second problem is that the

identified code rarely meets the user’s requirements. The functions with similar names

do not guarantee that the functionality, computation or the output is similar or has been
4

implemented correctly. It might also pose security or privacy risks, and can be too

complex to be understood or reused. The efficiency and design of implementation can

also be problematic. The methods might take slightly different parameters or return

slightly different values. Moreover, determining these differences is up to the

programmer and requires understanding the retrieved code, a difficult task, especially

if there are hundreds of poorly-documented search results.

The third problem is that even when code can be found that meets one’s requirements,

that code still has to be modified and adapted by the programmer. Overall,

programmers often feel that the effort required here is more than the effort required in

writing the code in the first place.

Developers are hesitant to use code Search Engine to get source code because of an

above mentioned problem with CSE. When code searching process, developers are

depending on the expert in a particular context or, they are developing from scratch,

and wasting time and money.

1.3 Problem Statement

In this research, our goal is to propose a software solution to developers who are facing

challenges in code reuse process. Our research is mainly focused only on small

companies. In software companies, the typical software development process is as

follows. First, the software architect designs the software architecture of the system,

and visualize it using a class diagram, an object diagram. Then the design will be sent

to the developer team. When the software architecture enters to the implementation

phase, the developer cannot start the coding from scratch, they need to include few

sample code or libraries in their own project. For this purpose, if the companies are

very big in economical level or human resource level, they will maintain an expert in

the particular area to advice to all staff [7].

5

Experienced workers are very important to companies, in the sense that someone with

experience has higher productivity [7]. When an experienced engineer or other

qualified employee leaves a company, it takes with her/him a corpus of knowledge,

which from the company point of view is a knowledge loss. In a high competitive

market environment, where companies strive to be alive, this problem is crucial. When

the developers search for the source code on the internet, the results they get includes

a mix of relevant and irrelevant results. The problem is that they need to identify the

relevant project in the pool of projects which is much simpler for an experienced

developer as they have built up a sense of the domain and software used through time

[28]. Therefore an experienced developer can make a better judgment on the most

appropriate code or library than a junior developer.

Developed tool
__ ffo. Developer!

■ Vmm
Software Architecture Our developed

framework

Software Architect

>'

Figure 1.1: Overview of our System [67].

If they have the automated tool to do these expert’s work itself, the challenges which

were discussed earlier will be vanished. So our research goal is, when a software

architecture enters to the development process in XML file format, automatically

extract specific information and download related Source code from the internet, and
6

then run an analyzing and matching process to select the most relevant source code.

So we ensure the impact of this research will be higher on all small and big software

industry even though we focus only on small and medium companies.

1.4 Research Question and Objectives

Research question

How are the software developers getting suitable sample code and libraries in the

development process?

Above mentioned question motivated us to start this research. Frequently we asked the

question our self during the research. We tried to find the answer for the question that

brought up our research step by step. As well as we delved the question till further

answer made this research growth this much. So the whole research says the answer

for the question. Through the following question supported to find the answer;

• Is there any existing answer for the question?

• What is the methodology used to find the answer?

• What are technologies and tools were used to tell the answer?

• In which way we said the answer?

• What are the challenges we faced to find the answer?

Objectives

Our goal is to develop a tool to facilitate the software engineers' challenges by
automatically optimizing and suggesting some libraries either from their own
company database or, from Internet by crawling, and apply appropriate design
patterns. To accomplish this goal, we planned the following objectives.

7

The research is to:

• Analyze the challenges, which includes suggesting libraries and design pattern

for a software architecture.

• Identify the challenges, which are faced by developers, when a software

architecture get developed.

• Develop a tool to solve the challenges analyzed in this research.

• Evaluate the performance of the tool with some real software architecture.

1.5 Contribution

To achieve the main goals of this research, we have developed an algorithm and a

framework to overcome above discussed problems. Our main contribution are as

follows:

• Extracting information from Software architecture (class diagram) which is in a

XML file format. For this process we used a XML parser (DOM parser).

• Download related project from the internet using the information extracted from

the XML file. For this process we developed three types of crawler (GitHub

crawler, SourceForge crawler, and GoogleCode crawler) using Java JSOUP API.

• Find all .java files in the downloaded projects and parse these files in Abstract

Syntax Tree.

• Extract all identifiers (method names, class names, and attribute names) and

leading comments for methods.

• Extracting real words from the identifiers using our algorithm as well as identifying

action verb from comments.

8

• Matching these words with the information from class diagram, rating them and

select the most relevant java class depend on the rating to be suggested to

developer.

Our experimental evaluation shows that, we can automate the process, the developer

does in the implementation phase, and that the automation impacts on the costs which

is discussed in Chapter 1, 1.1.

1.6 Challenges

In this research, we tried to automate all processes without human interaction, so we

faced lot of challenges. Few of the challenges are listed below,

• When we download the project, our developed framework will download all

related projects using keyword extracted from the class diagram. Identifying most

relevant project from such a large amount of downloaded project is difficult.

• Identifiers are selected by developers based on their personal preference. Therefor

the identifiers can be abbreviated the words or two or more words connected to

make concatenate identifiers. In such situations, identifying the original meaning

from the identifiers are very difficult.

• The developers do not follow the naming convention when they connect two or

more words, such as Camel Case naming convention or the explicit separator (_, /,

etc). Finding real words from these identifiers is difficult.

• Sometime they shrink the words in very bad manner and connect without the

naming convention. Finding real words from these types of identifiers is difficult

too.

9

1.7 Organization of the Thesis

The reminder of this thesis is organize as follows. Chapter 2 presents the background

of this research includes types of code searching, and types of code Search Engine,

GitHub API, Crawler, and Java JSOUP API, NLP techniques, APIs and tools used in

this research, Identifiers and comments analyzing, and related researches.

Chapter 3 describes research methodology, the purpose of each module in our

developed framework and our developed algorithm.

Chapter 4 describes the implementation of each module that we have implemented in

our framework.

Chapter 5 presents evaluation and result of our proposed approach.

Chapter 6 summarizes our work and suggest future works.

10

Chapter 2

Literature Review

One of the first thing is a programmer should do when writing new code is to find

existing, working code with the same functionality, and reuse as much of that code as

possible. With a large amount of open source code available and the fact that most

applications are not completely novel, one could imagine that a significant amount of

the code that is being written today has been written before in few software application,

and much of it is available in an open-source repository. This clearly demonstrate the

need for code search. The emphasis here is on enabling reuse, avoiding writing what

has been written before, making effective use of open Source software, speeding up

development, and producing higher quality software systems. But the challenge is

identifying the most relevant sample code from a huge amount of code.

This chapter describes an overview of the problem context through the literature of

current state of the art; while discussing every related work with our research work,

and how our work differs from their work. More well as some think is better we used

than other related work. This chapter includes five section, Section 2.1 includes types

of code searching and types of code search engine. Section 2.2 includes GitHub API,

Crawler, and Java JSOUP API. Section 2.3 describes the NLP techniques, APIs, and

tools used in this research. Section 2.4 describes Identifiers and comments analyzing.

Finally in section 2.5, we analyze our research with related work.

2.1 Code searching

Millions of lines of code are becoming available online. In many cases, this code

samples are carefully designed, implemented, tested and therefore represents readiness

11

for reusability. Lately, more and more companies, especially Small and Medium

Enterprises (SMEs), are reusing open source code to develop their own software.

Source code repositories such as SourceForge [1], GoogleCode [2] etc., serve as

component pools providing plenty of alternatives [11]. An Eclipse plugin (CodeGenie)

which is based on Test-driven code search (TDCS) [12] method for source code

searching and reusing from open source project on the internet. Test driven

development has a test case which includes inputs and expected output. Before

implementing the problem we need to write the test program (Using Junit framework

in java) which includes input and desired output, when running the code we will get

an error message. Then implement the actual program, and run the test code, this time

we will get pass message. So, the particular input results in the expected output. This

approach was used by them in code search to get the expected output. For example, if

we need to search a function to convert Roman number to Arabic number (String

roman (int arabic)), Roman, and Arabic will be used as keywords to search and then

the result will be matched with method signature. This approach is called test-case

queries.

Integrated Development Environment Code Services

start
Project Search
without
feature

Repository
AccessTest-Driven Code Searchr

Project
with Program

Slicingfeature

Figure 2.1: TDCS Process [12].

12

Once the desired code is found in a code search task, it can often be difficult to

manually extract what is necessary, to integrate in a local context. In order to address

this issue, the automated program slicing used by them. For searching phase they used

Sourcerer [12] to search the code. CodeGenie [12] sends the query to Sourcerer which,

in turn, returns the code results. The keywords are initially formed by the terms coming

from the method name and the class name. Sourcerer is an infrastructure for large-

scale analysis and indexing of source code Sourcerer crawls the Internet looking for

source code from various sources such as open source code repositories, public

websites and version control systems. The source code obtained from the Internet is

analyzed, parsed, and stored in the system in various forms. After developing the

plugin, they gave their application to 34 senior Computer Science students to evaluate

the performance of CodeGenie against a well-known code search engine [12].

Drawbacks of CodeGenie are, we need to write the test program before implementing

the problem. First, we need to know the result of the process, because the source code

will be downloaded if and only if the expected output is satisfied for every input. It

takes much time to create the test cases, so we cannot achieve our goal of reducing the

time cost. The developed a tool is only for setting the query. A separate tool, Sourcerer

is used for searching source code, and after downloading the relevant code sample,

they used automated program slicing.

Two techniques are used by them to search source code on the Internet. First technique

is automatic query expansion (AQE) approach that uses word relations to increase the

chances of finding relevant code. The approach is applied on top of Test-Driven code

search (TDCS). When a query comes to query expander it will search with synonym

and antonym using the WordNet [13] (using natural language term). For example if

the query had the term getName the generated terms will be ‘get’ and ‘name’; zipFile

would generate the terms zip and file. Code candidates must contain these keywords

in their method names in order to be matched. The second technique is interface-driven

13

code search with the test-driven code search. In the interface-driven code search, when

the code candidates possess an interface similar to the one designed for the desired

function they selected for test-driven code search, where test cases are run against

matched candidates to verify their suitability in the local context.

CodeGenie is used to develop this approach, it relies on Sourcerer, a source code

infrastructure to support TDCS. The current implementation of Sourcerer receives

queries to execute the interface-driven searches. First of all, the users have to develop

JUnit test cases for the desired function to search in CodeGenie. Then the tool extracts

the interface of the desired function's entry point method and formulates queries that

contain three parts:

(1) Return type of the method.

(2) Keywords present in the entry point method name.

(3) Parameter types of the method [14].

In this research also, TDCS used by them, so we faced the same problem as we

discussed earlier.

Recent source code search techniques such as keyword-based search, information

about program structure, and the test-driven code search are used by the programmer

when they search a source code from open source code repository. Cristina V. Lopes,

Donald Bren, et al. [14], said, that in terms of keyword search technique the developer

faces following challenges. The first challenge is the difficulty in finding the

appropriate keywords. But in our case, we extract the keywords from software

architecture. Another problem is that keyword-search typically yield many

unevaluated results. Therefore the programmers have to read each instance of returned

source code, attempt to understand what it does, and then determine if it meets their

requirements. But we analyzed the identifier from each Java files to meet the

requirements. In the second approach of their research, the program structure used by

14

them such as, method signature and loop structure. Its applicability is relatively

limited. And when they search the program structure may be irrelevant to the search.

0 V I* ft - -/» gKV.VV V «=>

Name terms: 'rorrun util' Return type: ‘String’ Arguments: flnp
o Java.Iang.String com.hp.hpl.Jena.qu€ry.util.RomanNumeral.asRomanNumerals(ino - Tesi runs: 6 Successes: 6 Failures. 0 Elapsed time: 6
e Java.Iang.Slring com.hp.hpl.Jena.query.util.RomanNumeral.l2r{im) - Tesi runs: 6 Successes: 6 Failures: 0 Elapsed time: 7
6 Java.langiirlng eiernalrealms.core.Util.roman(inO

java.langitrlng eiemalreakns.cl>em.srt.Util.roman(lni)
9 Java.IangAring com.p!aneUnk.slp!euupportUtil.converrroRo(nanOrjt) - Test runs: 6 Successes: 5 Failures: 1 Elapsed lime: 22_-fcurremV..irtt«ya«dJ

Show In• java.iang.String util.lnsertTestDau.rwnanCmO - Test runs: 6 Successes: 3 Failures: 3 Elapsed dme: 38 ►

v Search Again FS

Detach slice
jfijUnlt EP\
Finished after 0.022 seconds

0 v 11° Test slice

Runs: 6/6 B Errors: 0 B Failures: 1

= Failure Trace▼ d0 counler.RomanTest [Runner: JUnii 3)
dO ie stR omanl
l§0 te5iRoman2
^]testRoman3
Ep testRomai*
pOtesiRomanS
tf] testRoman6

j i JunliframeworlcComparisonFailure: expecied:<M> butwas:<P>
j = atjunii.frameworkAsserl.assertEqualslAsserLjava:81)
= ai JuniLframevs-orkAsserLassenEquals(AsserLjava:87)
= at coumer.RomanTesuestRoman6(Roman7esLjava:32)
= at sun.refleaNatrrtMethodAccessorimpl.[nvokeO(Naiive Method)
= at sun.renea.NaCveMerhodArressorlmpl.invoke(NativeM.ethodA£cessorlmpl.iava:39)

Figure 2.2: CodeGenie Search View [12].

In the test-case approach, test-cases are difficult to define when the solution is not well

defined, and the test-cases can be difficult to write. In many cases, the amount of code

required for testing can exceed the amount of code being retrieved. Semantics-based

search is a more effective method for searching source code. The programmer need to

state the information such that, what they want the identified code to do functionally,

where it has to fit in, and what constraints (e.g. performance, error handling, security,

privacy, synchronization) they want to impose on it. The tool S6 proposed by Steven

P. Reiss and et al. [15], enables few transformation in search such as converting a

class-based implementation into a method-based one (or vice versa), generalizing or

specializing parameter and return types, changing the way errors are reported, and

adding or removing logging or debugging statements.

15

Steven P. Reiss and et al. [15], used code search for searching user interface from the

open Source repository. They start with a simple sketch of the desired interface along

with a set of keywords describing the application context. Then they use the existing

code search engine to search appropriate application depending on the keywords. Then

they extract the runnable interface code from the application and compare the returned

result with the application context and matching the interface with the user’s sketch.

Finally, they return a well suited and completely developed interfaces to the

programmer to be interacted in their application. In the last step, if the programmer

has a different completed interface, they need to select an interface by going through

the retrieved interfaces manually [15].

The user interface sketch is provided as a Scalable Vector Graphics (SVG) file. SVG

is a common standard, works well with the web, there are many available tools for

creating and editing such diagrams. Apache provides a suite of Java-based tools for

SVG. Steven P. Reiss and et al. [15], used a modified version of the S6 search engine

to search user interfaces on the Internet. They transform the user’s sketch into a

hierarchical component’s description for the search. The description includes the

components that should be in the user interface and the relationships among the

components. Then the tool is evaluated by providing an address book example, where,

they take test on different keywords, different search engines, and measure the amount

of time for search and the accuracy of given the results [15]. In this solution, the user

needs to sketch the interface first, which will take considerable amount of time.

Adrian Kuhn, Florian S. Gysin et al. [16], presents a prototype named JBender that

increases the relevance of code search result with trust-ability information. With

keyword search, the developer cannot get a trustable project from open Source

repository among a huge amount of open source project. In order to get the trustable

projects the trustability metrics for code search results that use collaborative filtering

of both user votes and cross-project activity of developers were used. JBender creates

16

a searchable index over the code base and provides a code search over it. Its novelty,

however, lies in the underlying metadata which is linked to the projects in the

searchable code base upon finding results from the latter JBender can supply the meta­

information stored for the result’s originating project. To collect meta-information the

Ohloh [9] project used by them which is a social networking platform for open source

software projects where additional information regarding the projects can be specified

[10].

Ohloh [9] provides user-contributed information on both open Source projects and

their developers. Normally Ohloh [9] gives Description of original project, project

homepage, rating of the project, list of current repositories (type, URL, last time of

update, etc.), licenses of files in the project (exact type of license, number of files),

employed programming languages (percentage of total, lines of code, comment ratio,

etc.), the project’s users and developers who worked on the project (experience,

commits per project, etc.). Ohloh [9] website provides its own measurement of

developer “karma”, called kudo-rank. Kudo-ranks are based on a mix of user votes for

projects and of user votes for developers, called kudos. Then they use that information

they calculate trustability metrics. A project which gets higher trustability metrics

value is a more trustable project [16].

This research provides a solution to search trustable projects, but to improve actual

relevancy of results we need to analyze the projects deeper at code level.

Sushil K Bajracharya et al. [17], states that keywords based information retrieval is

not 100% suitable for code search as sometimes it will fail to perform well in retrieving

API usage examples from code repositories. Instead of keywords search, they

proposed Structural Semantic Indexing (SSI) [17], a technique to associate words with

the Source code entities based on similarities of the API usage. The classes and

methods, which have similar functionalities will use the same API, this is semantically

related. A retrieval system implemented by them based on the Sourcerer. All the source

codes will be indexed and imported into SourcererDB. When we search for a source
17

code, a retrieval scheme takes a keyword query and returns a ranked list of code entities

as a search result. This ranked list of entities is called hits and each entry in the list is

called a hit. The search tool will extract a related code snippet for each hit using this

information. From the extracted code snippet, assessing the relevancy of each code

snippet, and finally selecting a set of metrics to compare the effectiveness of the

retrieval schemes. The evaluation methodology for the proposed solution consists of

building a corpus to test the retrieval schemes, creating a set of candidate queries,

executing the queries using all retrieval schemes to generate code snippets, assessing

the relevancy of each code snippet, and finally selecting a set of metrics to compare

the effectiveness of the retrieval schemes. For the evaluation, they have used features,

such as corpus, ranked results, relevancy judgment, and performance metrics. Their

goal with SSI was to be able to build an effective code retrieval scheme that uses no

documents other than source code. Large source code repositories such as Sourceforge

[1] and GitHub [6] serve both as motivation and target of their approach [17]. But our

developed framework can make the keyword search 100% suitable for code search due

to analysis on the code level.

www. oh! oh. net Version Control
Web

L Trust able
Search Result Developer

Figure 2.3: Architecture of the JBender Prototype [16].

18

2.2 GitHub API Integration

In this research, we considered three types of source code repositories such as

Sourceforge [1], GoogleCode [2], and GitHub [6]. We develop the same type of

crawler for Sourceforge [1] and GoogleCode [2], but for GitHub [6] we have

developed a different implementation with GitHub API.

2.2.1 GitHub API

Git is a “version control system,” its mean, when developers are creating something (an

application or the document), they are making constant changes to the code and

releasing new versions, up to and after the first official (non-beta) release. Version

control systems keep these revisions straight, and store the modifications in a central

repository. This allows developers to easily collaborate, as they can download a new

version of the software, make changes, and upload the newest revision. Every developer

can see these new changes, download them, and contribute. Similarly, people who have

nothing to do with the development of a project can still download the files and use

them. Most Linux users should be familiar with this process, as using Git, Subversion,

or few other similar method is pretty common for downloading needed files, especially

in preparation for compiling a program from source code (a rather common practice for

Linux geeks)[18].

In case you are wondering why Git is the preferred version control system of most

developers, it has multiple advantages over the other systems available (CVS, SVN,

MERCURIAL, BAZZAR, and MONOTONE) [63], including a more efficient way to

store file changes and ensuring file integrity. If you’re interested in knowing the details,

check out this page to read a thorough explanation on how Git works. Also if you want

to store your project in Git version control system, you can use Git is a command-line

19

T H34S/7

tool, but the center around which all things involving Git revolve effectively, the Hub

of Git, is GitHub.com, where developers can store their projects and network with

likeminded people. The Git version control system is not only for programming projects

but also it is or all documents (text file, project file, excel sheet, and) and the file can

be stored as well as can be updated in desire time [18].

Pull rrqu*sts Issurs

X

Learn Git and GitHub without any code!
Using the Hello Woild guide, you'll create a repository, start a branch,

write comments, and open a pull request.

Start a project

V R«lnc1 review diwrisult with
protected bfarKhes

can ft&ft Wlrtct W*Kr r» tbif XO dr'.nr-.j
on you' p'Glr<ted b'ltvfK

X

Discover interesting projects and
people to populate your personal
news feed.

A2 r r*
Your nows helps you keep up with recent activity on
repositories you watch and people you follow. Repositories you contribute to O

£» ulVAmj/ingLanke c *Explore GitHub

Figure 2.4: Overview of the GitHub page [6].

Owner Repository name
[j.__J hubot / hollo-worldPL

Groat repository names are short and momorablo. Need Inspiration? How about potulant-shame.

Description (optional)

Just another repository

©Q Public
Anyone can soo this repository. You choose who can commit.

o Private
You choose who can soo and commit to this repository.

Initialize this repository with a README
This will allow you to git clone tho repository immediately. Skip tills stop if you havo already run git inlt locally.

Add .gitignoro: None » Add a liconso: None - 0

Figure 2.5: Repository in the GitHub [64].

20

Where repository is a location where all the files for a particular project are stored,

usually abbreviated to “repo.*’ Each project will have its own repo, and can be accessed

by a unique URL. GitHub doesn't have the set disk quotas. They try to provide abundant

storage for all Git repositories, within reason. Keeping repositories small ensures that

their servers are fast and downloads are quick for our users. They recommend

repositories be kept under 1GB each. This limit is easy to stay within if large files are

kept out of the repository. If your repository exceeds 1GB, you might receive a polite

email from GitHub Support requesting that you reduce the size of the repository to bring

it back down [18].

GitHub providing an Application program Interface [58] to researcher and developer

for developing a system with GitHub API integration. They provide the API in all

languages such as Java (GitHub API for Java), Go (go-Github), and Objective-C

(UAGithubEngine). Following tasks can be done using GitHub API. All GIT activities

within our application such that, Create, update, local changes, commit, branches and

tag, etc. As well as we can have all repository details such as, repository name by

language and by an author, and class names. When doing an integration of GitHub API,

the developers and researchers will face a lot of technical problems. For these issues,

GitHub maintain support teams, they are servicing 24 hours, if you request a solution

to the problem faced in GitHub API integration, and they will give solution within a

short period.

We integrated GitHub API for retrieving all java repositories name list and all .java

files name list on the GitHub. Normally, GitHub API provides that details in JSON

objects. We can access that JSON strings using a JSON parser. When we implement

GitHub API, we will face a lot of limitation and access level. We broke that limitation

by using few neat techniques. The following limitations are available in the GitHub API

such as, by default only 30 objects will be displayed even though one page contains

more than million repositories name, so we can access only 30 objects. But we can

extend to 100 JSON object according to Figure 2.7. After doing this extension also we

21

cannot access all JSON object. Then we used particular date in the query. We can access

the projects which are created on particular date. Even though the number of project

created on particular date were more than 5000. Then we shrank the query into

particular time on particular date, so using one loop we can access all projects name list

which are created every hour in every day. For this we used calendar API in java.

O

O CompareSoftware
XML File with .javaArchitecture

file name
Software Architect

Onw
Developer

Figure 2.6: GitHub API implemented System overview

Even we used each hour on a particular date, the number of the project was more than

100, and then we split the query into seconds. The number of projects created in a

second was less than 100. So we can access all the projects detail which are created in

each second in each hour on a particular date. Another very big limitation is, we can

make only 10 queries within one minute. It means they allow our crawler to hit their

web page only ten times in a minute. Then we used a Java threat to wait one minute

after making 10 queries. GitHub API provides so many facilities, in which we used

22

only repository search for all java repository name in GitHub, and code search for all

.java file name list in a particular project.
URL using GitHub API Details
https://api.github.com/search/repositories?q=language:java It will return only 30 JSON objects in a page

and number of projects in GitHub as well as
details of the projects (author, created date,
etc.)

https://api.github.com/search/repositories?q=language:java&per_page=100 It will return 100 JSON objects in a page and
some details about the projects. But we access
only 100 JSON objects

https://apl.github.com/search/repositories?q=language:Java+created:>2016-01-
16&per_page=100

It will return all projects, which are created
before 2016-01-16, now also we cannot access
all projects.

https://apl.github.com/search/repositories?q=language:Java+created:2016-01-
16TOO:00:OOL.2016-01-16T01:00;OQZ&per_page=100
https://api.github.com/search/repositories?q=language:java+created:2015-09-
19T00:00:00Z..2015-O9-19T00:00:01Z&per_page=100
https://api.github.eom/search/code7q:repo:elastic/elasticsearch%20extenslon:java
&start=0

It will return all projects, which are created on
2016-10-16 at 01:00:00.
It will return all projects, which are created on
2016-10-16 at 00:00:01.
It will return all .java file names within
elasticsearch projects In GitHub, and on first
page-

Figure 2.7: URL to access all java repository names and all .java file names in

GitHub and its details [59].

2.2.2 Search API and repository search

The Search API is optimized to help you find the specific item you're looking for (e.g.,

a specific user, a specific file in a repository, etc.). Think of it the way you think of

performing a search on Google. It's designed to help you find the one result you're

looking for (or maybe the few results you're looking for). Just like searching on

Google, you sometimes want to see a few pages of search results so that you can find

the item that best meets your needs. To satisfy that need, the GitHub Search API [59]

provides up to 1,000 results for each search. Unless another sort option is provided as

a query parameter, results are sorted by best match, as indicated by the Score field for

each item returned. This is a computed value representing the relevance of an item

relative to the other items in the result set. Multiple factors are combined to boost the

most relevant item to the top of the result list. Find repositories via various criteria.

23

https://api.github.com/search/repositories?q=language:java
https://api.github.com/search/repositories?q=language:java&per_page=100
https://apl.github.com/search/repositories?q=language:Java+created:%3e2016-01-
https://apl.github.com/search/repositories?q=language:Java+created:2016-01-
https://api.github.com/search/repositories?q=language:java+created:2015-09-
https://api.github.eom/search/code7q:repo:elastic/elasticsearch%20extenslon:java

this method returns up to 100 results per page [19]. Table 1 and figure 2.1 describe

parameter need to use to get all Java repositories name on the GitHub.

Type DescriptionName

The search keywords, as well as any qualifiers.string

The sort field. One of stars, forks, or updated. Default: results are sorted
by best match.

stringsort

The sort order if sort parameter is provided. One of asc or desc. Default:
desc

stringorder

Table 2.1: The parameters used in Search API Query [59].

To keep the Search API fast for everyone, they limit how long the individual query

can run. For queries that exceed the time limit, the API returns the matches that were

already found prior to the timeout, and the response has the incomplete results property

set to true. Reaching a timeout does not necessarily mean that search results are

incomplete. More results might have been found, but also might not. The q search term

can also contain the combination of the supported repository search qualifiers. Suppose

you want to search for popular Tetris repositories written in Assembly. Your query

might look like this, it means you make a request with the keyword Tetris.

https://api.github.com/search/repositories?q=tetris+language:assembly&sort=stars

&order=desc. In above request, we're searching for repositories with the

word Tetris in the name, the description, or the README. We're limiting the results

to only find repositories where the primary language is Assembly. We're sorting by

stars in descending order so that the most popular repositories appear first in the search

results. In this way, we can break the limitations which we discussed in section 2.2.1.

But using these parameters and qualifiers we cannot break the number of request in

minutes [19].

24

https://api.github.com/search/repositories?q=tetris+language:assembly&sort=stars

Table 2.2: The search qualifiers used in query [59].

Search qualifiers Description

Qualifies which fields are searched. With this

qualifier you can restrict the search to just the

repository name, description, readme, or the

combination of these.

in

size Finds repositories that match a certain size (in

kilobytes).

forks Filters repositories based on the number of

forks.

created or pushed Filters repositories based on date of creation, or

when they were last updated.

Limits searches to a specific user or repository.user or repo

language Searches repositories based on the language

they're written in.

Searches repositories based on the number ofstars

stars.

All API access is over HTTPS and accessed from the https://api.github.com. All data

is sent and received as JSON. When you fetch a list of resources, the response includes

a subset of the attributes for that resource. This is the "summary" representation of the

resource. (Few attributes are computationally expensive for the API to provide. For

performance reasons, the summary representation excludes these attributes. To obtain

these attributes, fetch the "detailed" representation. When you fetch an individual

resource, the response typically includes all attributes for that resource. This is the

"detailed" representation of the resource. (Note that authorization sometimes

25

https://api.github.com

influences the amount of detail included in the representation.). There are three

possible types of client errors on API calls that receive request bodies [19]:

1. Sending invalid JSON will result in a 400 Bad Request response.

HTTP/1.1 400 Bad Request
Content-Length: 35

{"message":"Problems parsing 3SON")

Figure 2.8: Client errors 1 [59].

2. Sending the wrong type of JSON values will result in a 400 Bad Request response.

HTTP/1.1 403 Bad Request
Content-Length: 40

("message*':'Body snouia De a ISON object”)

Figure 2.9: Client errors 2[59].

3. Sending invalid fields will result in a 422 Unprocessable Entity response.

HTTP/1.1 422 Unprocessable Entity
Content-Length: 149

{
"message”: "Validation Failed",
"errors": [

{
"resource”: "Issue",
"field": "title",
"code": "missing_field”

}
]

>

Figure 2.10: Client errors 3 [59].

All error objects have resource and field properties so that your client can tell what the

problem is. There's also an error code to let you know what is wrong with the field.

These are the possible validation error codes. Resources may also send custom

26

validation errors (where the code is custom). Custom errors will always have a

message field describing the error, and most errors will also include a

documentation_url field pointing to few content that might help you resolve the error.

This means a resource does not exist.Missing

missing Jield : This means a required field on a resource has not been set.

Invalid This means the formatting of a field is invalid. The

documentation for that resource should be able to give you more specific information.

already_exists :

can happen in resources that must have few unique key (such as Label names).

This means another resource has the same value as this field. This

The GitHub API provides a vast wealth of information for developers to consume.

Most of the time, you might even find that you're asking for too much information,

and in order to keep their servers happy, the API will automatically paginate the

requested items. To start with, it's important to know a few facts about receiving

paginated items: Different API calls respond with different defaults. For example, a

call to list GitHub's public repositories provides paginated items in sets of 30, whereas

a call to the GitHub Search API provides items in sets of 100. You can specify how

many items to receive (up to a maximum of 100); but, for technical reasons, not every

endpoint behaves the same. For example, events won't let you set a maximum for items

to receive. Be sure to read the documentation on how to handle paginated results for

specific endpoints. With the ?per_page parameter. Note that for technical reasons not

all endpoints respect the ?perjpage parameter few will respect that,

https://api.github.com/user/repos?page=2&perjpage=100, Note that page numbering

is 1-based and that omitting the ?page parameter will return the first page [19].

27

https://api.github.com/user/repos?page=2&perjpage=100

2.2.3 Crawler, and Java JSOUP API

Web crawling is the process by which we gather pages from the Web, in order to index

them and support a search engine. The objective of crawling is to quickly and

efficiently gather as many useful web pages as possible, together with the link structure

that interconnects them [20]. A crawler is a program that visits Web sites and reads

their pages and other information in order to create entries for a search engine index.

The major search engines on the Web all have such a program, which is also known

as a "spider" or a "bot." Crawlers are typically programmed to visit sites that have been

submitted by their owners as new or updated. Entire sites or specific pages can be

selectively visited and indexed. Crawlers apparently gained the name because they

crawl through a site a page at a time, following the links to other pages on the site until

all pages have been read [21].

Following features a crawler should provide, Distributed: The crawler should have the

ability to execute in a distributed fashion across multiple machines. Scalable: The

crawler architecture should permit scaling up the crawl rate by adding extra machines

and bandwidth. Performance and efficiency: The crawl system should make efficient

use of various system resources including processor, storage and network bandwidth.

Quality: Given that a significant fraction of all web pages are of poor utility for serving

user query needs, the crawler should be biased towards fetching “useful'’ pages first.

Freshness: In many applications, the crawler should operate in continuous mode: it

should obtain fresh copies of previously fetched pages. A search engine crawler, for

instance, can thus ensure that the search engine’s index contains a fairly current

representation of each indexed web page. For such continuous crawling, a crawler

should be able to crawl a page with a frequency that approximates the rate of change

of that page. Extensible: Crawlers should be designed to be extensible in many ways

to cope with new data formats, new fetch protocols, and so on. This demands that the

crawler architecture be modular [20].

28

Crawling is a basic operation of the hypertext crawler (whether for the Web, an intranet

or other hypertext document collection) is as follows. The crawler begins with one or

more URLs that constitute a seed set. It picks a URL from this seed set, then fetches

the web page at that URL. The fetched page is then parsed, to extract both the text and

the links from the page (each of which points to another URL). The extracted text is

fed to a text indexer. The extracted links (URLs) are then added to a URL frontier,

which at all times consists of URLs whose corresponding pages have yet to be fetched

by the crawler. Initially, the URL frontier contains the seed set; as pages are fetched,

the corresponding URLs are deleted from the URL frontier. The entire process may be

viewed as traversing the web graph [20].

robots
templates

Doc
FP's

URL
set

■DNS

I
Dup
URL
El im

VWVN < Ton ten
Seen?

URL
FilterJars(

-----► -'etch

i

URL Frontier

Figure 2.11: The basic crawler architecture [20].

The simple scheme outlined above for crawling demands several modules that fit

together as shown in Figure 2.11.

1. The URL frontier, containing URLs yet to be fetched in the current crawl (in the

case of continuous crawling, a URL may have been fetched previously but is back in

the frontier for re-fetching).

2. A DNS resolution module that determines the web server from which to fetch the

page specified by a URL.

3. A fetch module that uses the http protocol to retrieve the web page at a URL.

29

4. A parsing module that extracts the text and set of links from a fetched web page.

5. A duplicate elimination module that determines whether an extracted link is already

in the URL frontier or has recently been fetched [20].

A crawler thread begins by taking a URL from the frontier and fetching the web page

at that URL, generally using the http protocol. The fetched page is then written into a

temporary store, where a number of operations are performed on it. Next, the page is

parsed and the text as well as the links in it are extracted. In addition, each extracted

link goes through a series of tests to determine whether the link should be added to the

URL frontier. First, the thread tests whether a web page with the same content has

already been seen at another URL. The simplest implementation for this would use a

simple fingerprint such as a checksum. Next, a URL filter is used to determine whether

the extracted URL should be excluded from the frontier based on one of several tests.

For instance, the crawl may seek to exclude certain domains (say, all .com URLs) - in

this case the test would simply filter out the URL if it were from the .com domain. A

similar test could be inclusive rather than exclusive. Many hosts on the Web place

certain portions of their websites off-limits to crawling, under a standard known as the

Robots Exclusion Protocol. This is done by placing a file with the name robots.txt at

the root of the URL hierarchy at the site. Here is an example robots.txt file that

specifies that no robot should visit the URL whose position in the file hierarchy starts

with /yoursite/temp/, except for the robot called “search-engine” [20].

User-agent: *

Disallow: /yoursite/temp/

User-agent: search-engine

Disallow:

30

The robots.txt file must be fetched from a website in order to test whether the URL

under consideration passes the robot restrictions, and can therefore be added to the

URL frontier. Next, a URL should be normalized in the following sense: often the

HTML encoding of a link from a web page p indicates the target of that link relative

to the page p. Threads in a crawler could run under different processes, each at a

different node of a distributed crawling system. Such distribution is essential for

scaling; it can also be of use in a geographically distributed crawler system where each

node crawls hosts “near” it. Partitioning the hosts being crawled amongst the crawler

nodes can be done by a hash function, or by few more specifically tailored policy [20].

Doc
FP's

URL
set

To
other
nodes
LLi

Dup
=H URL

Elim
< Ion ten t
Seen?

Host
>plittei

URL
Filterrsc

h? tch P
From
other
nodesi

URL Frontier

Figure 2.12: Distributing the basic crawl architecture [20].

JSOUP is a Java library for working with real-world HTML. It provides a very

convenient API for extracting and manipulating data, using the best of DOM, CSS,

and jquery-like methods. JSOUP implements the WHATWG HTML5 specification,

and parses HTML to the same DOM as modern browsers do [22].

• scrape and parse HTML from a URL, file, or string

• find and extract data, using DOM traversal or CSS selectors

• manipulate the HTML elements, attributes, and text
31

i

• clean user-submitted content against a safe white-list, to prevent XSS attacks

• output tidy HTML

JSOUP is designed to deal with all varieties of HTML found in the wild; from pristine

and validating, to invalid tag-soup; JSOUP will create a sensible parse tree [22].

Overview Package Class Use Tree Deprecated Index Help

Frames No FramesPrev Next

jsoup Java HTML Parser 1.10.2 API

jsoup Java HTML parser that makes sense of real-world HTML soup.
See Description

Packages

Package Description
org.jsoup

org.jsoup.examples
org.jsoup.helper

! org.jsoup.nodes
org.jsoup.parser
org.jsoup.safety
org.jsoup.select

Contains the main Jsoup class, which provides convenient static access to the jsoup functionality.
Contains example programs and use of jsoup.

HTML document structure nodes

Contains the HTML parser, tag specifications, and HTML tokeniser.
Contains the jsoup HTML cleaner, and whitelist definitions.
Packages to support the CSS-style element selector.

Figure 2.13: Overview of JSOUP package [22].

2.3 NLP techniques, APIs and tools

The NLP techniques and the Machine learning techniques are used in this research,

such as N-gram algorithm, and Dynamic Time Warping speech recognition technique.

As well as the implemented software tools are used such as Stanford SpellChecker,

WordNet, and Stanford POS tagger.

32

2.3.1 N-gram Technique

An N-gram is an N-character slice of a longer string. Although in the literature the

term can include the notion of the co-occurring set of characters in a string (e.g., an N-

gram made up of the first and third character of a word) [23]. N-grams of texts are

extensively used in text mining and natural language processing tasks. They are

basically a set of co-occurring words within a given window and when computing the

n-grams you typically move one word forward (although you can move X words

forward in more advanced scenarios). For example, for the sentence "The cow jumps

over the moon". If N=2 (known as bigrams), then the n-grams would be: the cow, cow

jumps, jumps over, over the, the moon so you have 5 n-grams in this case. Notice that

we moved from the->cow to cow->jumps to jumps->over, etc, essentially moving one

word forward to generate the next bigram [24].

If N=3, the n-grams would be: the cow jumps cow jumps overjumps over the over the

moon so you have 4 n-grams in this case. When N=l, this is referred to as unigrams

and this is essentially the individual words in a sentence. When N=2, this is called

bigrams and when N=3 this is called trigrams. When N>3 this is usually referred to as

four grams or five grams and so on [24].

In this way, we use this algorithm to get chunks of a word, using the k-gram technique,

for an example, when we split a word into grams, append $ to the beginning and end

of the string in order to help with matching beginning-of-word and ending-of-word

situations. (We will use the dollar character (“$”) to represent blanks.) Thus, the word

“TEXT” would be composed of the following N-grams: bi-grams: T, TE, EX, XT, T,

tri-grams: $TE, TEX, EXT, XT_, T$$, quad-grams: $TEX, TEXT, EXT$, XT$$, T$$$

In general, a string of length k, padded with blanks, will have k+1 bi-grams, k+1 tri­

grams, k+1 quad-grams, and so on.

33

2.3.2 Dynamic Time Warping

Dynamic time warping (DTW) is a well-known technique to find an optimal alignment

between two given (time-dependent) sequences under certain restrictions. Intuitively,

the sequences are warped in a nonlinear fashion to match each other. Originally, DTW

has been used to compare different speech patterns in automatic speech recognition.

In fields such as data mining and information retrieval, DTW has been successfully

applied to automatically cope with time deformations and different speeds associated

with time-dependent data [7].

Sequence X

Sequence Y
Time

Figure 2.14: Time alignment of two time-dependent sequences [7].

Figure 2.15: Composite identifier recognition [7].

As shown in Figure 2.14, given two signals, two vectors of features, i.e., coefficients

extracted from two utterances, the algorithm determines an alignment between the two

vectors of features. Let xl, x2. . . xN be the input feature vector extracted from an

unknown utterance (x axis) and yl, y2, . . . , yM a feature vector in a dictionary of

34

i

signals (y axis) a DTW algorithm performs a warping of the time axis x and y to find

the optimal match between the two vectors and, thus, the closest match of the unknown

input utterance with prerecorded dictionary entries [7]. To compute the optimal

matching given two time series (or strings) xl, x2. . . xN and yl, y2, . . . , yM, the

DTW distance D(N,M) is recursively computed. Let d (xi, yj) be a local distance

chosen depending on the problem at hand.In speech recognition, such a distance is

often the Euclidean distance between feature vectors; for strings, it can be the ordinal

distance of characters or just the comparison of the two characters at position i and j.

Then, for the intermediate point [7]

D(i,j):

c(i,j) = d(xi, yj)

D(i,j) = min [wl ■ D (i - l,j) + c(i,j), //insertion

w2 ■ D (i,j - 1) + c(i, j) // deletion

// matchD (i — l,j-l) + w3c(i,j)]

The recurring equation computes the current distance based on previous values and

thus it imposes continuity constraints. Weights wl, w2, w3 are problem-dependent,

typically wl is chosen equal to w2, so that the computed distance is symmetric; w3 is

often chosen to be twice the value of wl and w2. In string matching, if xi differs from

yj, then it corresponds to a substitution that is equivalent to the deletion of one

character followed by one insertion. In our computation, we choose wl = w2 = 1 and

w3 = 2.The computation is done as follows. It uses a grid built by putting an identifier

the x-axis and the dictionary words on the y-axis, as shown in Figure 2.15. It starts

the bottom-left side of the grid and is performed by computing a distance D (i, j)

based on d(xi, yj) for each cell of the grid, i.e., by comparing the corresponding

elements on the x and y axis (which are portions of the signal in speech recognition,

while they are characters in our application) and finding the local path of minimum

cost, i.e., (i - 1, j), (i, j - 1), or (i - 1, j - 1). The computation proceeds by columns

on

on

35

(or rows); once the cost matrix D(i, j) has been filled, the cell D(N,M) contains the

minimum alignment cost, i.e., the minimum distance between xl, x2,..., xN and yl,

y2, . . . , yM. Backtracking from (N, M) down to (0, 0) recovers the warping path

corresponding to the optimal alignment of xl, x2.. . xN and yl, y2,..., yM [7].

Given a dictionary containing the words rotate and shape, the identifier rotateShape

would best match with the words rotate and shape. The identifier splitting problem can

thus be brought back to the problem of determining the sequence of R words q (1).. .

q(R), where q (i) represents a word in a given dictionary, such that the distance between

the input identifier and the sequence of word is minimized. Figure 2.15 graphically

represents this problem, where the x axis represents an identifier (composed of one or

more words) and on y axis are entries of a reference dictionary. In Figure 2.15, the

dictionary contains three words Counter, User, and Ptr, while the input identifier is

UserCounterPtr [7].

2.3.3 Stanford SpellChecker

Stanford University people has developed a spell checker to check the spelling for

wrong spelling words. They used N-gram technique to implement this spell checker.

If we want to implement the spell checker in our project, we can download the JAR

file of the spell

Checker, and then integrate the JAR file into our own project. When we use Stanford

spell checker integrated application, by default we will get 10 related words including

the correct word. As well as they are maintaining a website to do this spell checking

process without the implementation, Figure 2.16 show the online version of Stanford

SpellChecker.

36

SpoHClM>chor Grammar TIm» k n urus

prut

I ■ag

rSSS22S2I2:
____ I

All'a«'PRN
parent
prints
(>r onto

mSuoDotions:

javaso iptsubmit_m iclCsp_cli') i

Figure 2.16: Online Version of Stanford SpellChecker [66].

2.3.4 WordNet

WordNet, a manually constructed electronic lexical database for English, was

conceived in 1986 at Princeton University, where it continues to be developed.

Experiments by researchers in Artificial Intelligence (Collins and Quillian, 1968, inter

alia) probing human semantic memory inspired the psycholinguist George A [13].

WordNet is a large semantic network interlinking words and groups of words by means

of lexical and conceptual relations represented by labeled arcs. WordNet’s building

blocks are synonym sets (synsets), unordered sets of cognitively synonymous words

and phrases (Cruse, 1986). Each member of a given synset expresses the same concept,

though not all synset members are interchangeable in all contexts. Examples are {car,

automobile}, {hit, strike}, and {big, large}. All synsets further contain a brief

definition, and most include one or more sentences illustrating the synonyms' usage.

A domain label (sports, medicine, and biology) marks many synsets. Joint membership

37

of words in a given synset illustrates the phenomenon of synonymy. Membership of a

word in multiple synonyms reflects that word’s polysemy, or multiplicity of meaning.

Thus, trunk appears in WordNet in several different synsets, including {trunk, tree

trunk}, {trunk, torso}, and {trunk, proboscis} [13].

WordNet consists of four separate components, each containing synsets with words

from the major, openclass, syntactic categories: nouns, verbs, adjectives, and adverbs.

WordNet 2.1 contains almost 118 000 synsets, comprising more than 81,000 noun

synsets, 13 600 verb synsets, 19 000 adjective synsets, and 3 600 adverb synsets.

Synonymy is the major lexical relation among individual word forms; another is

antonymy, as between the pairs {wet} and {dry} and {rise} and {fall}.

Morphosemantic relations link words from all four parts of speech that are both

morphologically and semantically related (Fellbaum and Miller, 2003). For example,

the semantically related senses of interrogation, interrogator, interrogate, and

interrogative are interlinked. Conceptual-semantic relations link not just single word

forms but entire synsets [13].Concepts expressed by nouns are densely interconnected

by the hyponymy relation (or hyperonymy, or subsumption, or the ISA relation), which

links specific concepts to more general ones. For example, the synset {mailbox,

letterbox} is a hyponym, or subordinate, of {box}, which in turn is a hyponym of

{container}. {Mailbox, letter box} is a hypemym, or superordinate, of {pillar box},

which denotes a specific type of mailbox. Hyponymy builds hierarchical ‘trees’ with

increasingly specific ‘leaf concepts growing from an abstract ‘root.’ All noun synsets

ultimately descend from {entity} [13].

Another major relation among noun synsets is meronymy, which links synsets

denoting parts, components, or members to synsets denoting the whole. Thus, {finger}

is a meronym of {hand}, which in turn is a meronym of {arm}, and so forth.

Meronymy in WordNet actually encompasses three distinct partwhole relations. One

holds among proper parts or components, such as {leg} and {table}. Another links

substances that are constituents of other substances: {oxygen} is a part of {water} and

38

{air}. Members such as {tree} and {parent}

{family} [13].
parts of groups such as {forest} andare

Verbs are organized by a several entailment relations (Fellbaum and Miller, 1990;

Fellbaum, 1998b). The most prevalent is troponymy, which relates synset pairs such

that one expresses a particular manner of the other (e.g., {whisper}-{talk} and

{punch}-{strike}). Like hyponymy, troponymy builds hierarchies of several levels of

specificity. Other relations are backward entailment (divorce-marry), presupposition

(buy-pay), and cause (show-see).

WordNet distinguishes descriptive and relational adjectives. Descriptive adjectives are

organized into direct antonym pairs, such as wet-dry and long-short. Each member of

a direct antonym pair is associated with a number of‘semantically similar’ adjectives.

Damp and drenched are semantically similar to wet, and arid to dry. These concepts

are said to be indirect antonyms of the direct antonym of their central members, i.e.,

drenched is an indirect antonym of dry, and arid is an indirect antonym of wet [13].

Two important components of WordNet’s design are inheritance and reversibility.

Inheritance applies to hierarchy-building relations. If {mailbox, letter box} is enCoded

hyponym of {box}, and {box} as a hyponym of {container}, then {mailbox,

letterbox} is automatically recorded as a hyponym of {container}, via the principle of

inheritance. Similarly, if {finger} is a part of {arm}, and {hand} is part of {arm}, then

{finger} is necessarily a part of {arm}, too. Many concepts are assigned to both types

of hierarchy. Relations are enCoded in WordNet only once between a given pair of

synsets or words. The pointer gets automatically reversed, so if {tree} is manually

enCoded as a meronym of {forest}, then {forest} will automatically become a

holonym of {tree}. And if {mailbox} is manually enCoded as hyponym of {box}, then

{box} will automatically become a hypemym of {mailbox}. The lexical (word-word)

relations are bidirectional, too [13].

as a

39

{entity J
O

(physical ’ entity}

.......{causal agent, cause,
causa! agency} O.......iO {object, physical object)

O'"**"
{living thing, animate thing)

•°{ organism, being}
X

{person, IncJvkJual, someone, * <^5
somebody, mortal, human, soul};

O {bad person }

O] wrongdoer, offender}

CheatTrickster

Bcguiler

CheaterSlicker

{deceiver },n

Someone who teads you to believe something that
is not true

Figure 2.17: A WordNet Noun Tree [13].

2.3.5 Stanford POS tagger

The process of assigning one of the parts of speech to the given word is called Parts

Of Speech tagging (POS). It is commonly referred to as POS tagging. Parts of speech

include nouns, verbs, adverbs, adjectives, pronouns, conjunction and their sub­

categories [10]. A Part-Of-Speech Tagger (POS Tagger) is a piece of software that

reads the text in the language and assigns parts of speech to each word (and another

token), such as noun, verb, adjective, etc., although generally computational

applications use more fine-grained POS tags like ’noun-plural' [25]. Taggers use

several kinds of information: dictionaries, lexicons, rules, and so on. Dictionaries have

category or categories of a particular word. That is a word may belong to more than

40

category. For example, the run is both noun and verb. Taggers use the probabilistic

information to solve this ambiguity [26].

one

iS Tag
CC
CD
DT
EX
FW

Description Example
Coordin. Conjunction nut/, but. or
Cardin;il number

Example
A

to
a It. oops
rot
cite
eating

Tag Description
SYM Symbol
TO -to”
UM
VB

one, two. three
a. the
lit ere

Determiner Interjection
Verb, base form

VBD Verb, past tense
V13G Verb, gerund
VBN Verb, past participle eaten
VBP Verb. non-3sg pres eat

Existential " 11 tore'
Foreign word tnea culpa
Prcposition/sub-conj of. in. by
Aidjecti vc

IN
JJ yellow•

bigger
wildest
1. 2. One
can. should
Hama
Hamas

J JR
JJS

Adj.. comparative
Adj.. superlative
List item marker
Modal

VBZ Verb, 3sg pres
WOT Wh-dctcrmincr
WP
WPS Possessive wh-
WRB Wli-advcrb

Dollar sign
Pound sign
Left quote
Rigbl quote
Left parenthesis
Right parenthesis
Comma
Sentence-final punc (. ! ?)
Mid-scnicncc punc (: l — — -)

eats
which, that
what, who
whose
how. where

LS
MD
NN
NNS
MNP

Wh-pronoun
Noun. sing, or mass
Noun, plural
Proper noun, singular HIM

NNPS Proper noun, plural
PDT

S$
Carol inas
all. both

#H
Predeterminer (* or *•)

(* or ”)
< [. <. {. <)
< 1.). }. >)

POS Possessive ending
Personal pronoun
Possessive pronoun
Adverb
Adverb, comparative faster

fastest
up. off

\v
PP /. you. he

your, one \v
t/uick!\\ never

(
PPS
RB
RBR
RBS

)

Adverb, superlative
ParticleRP

Figure 2.18: Taggest list and example [65].

There are mainly two type of taggers: rule-based and stochastic. Rule-based taggers

use hand-written rules to distinguish the tag ambiguity. Stochastic taggers are either

HMM based, choosing the tag sequence which maximizes the product of word

likelihood and tag sequence probability, or cue-based, using decision trees or
entropy models to combine probabilistic features [26]. Ideally a typical

tagger should be robust, efficient, accurate, tunable and reusable. In reality taggers

either definitely identify the tag for the given word or make the best guess based on

the available information. As the natural language is complex it is sometimes difficult

for the taggers to make accurate decisions about tags. So occasional errors in tagging

is not taken as a major roadblock to research [26]. Tagset is the set of tags from which

the tagger is supposed to choose to attach to the relevant word. Every tagger will be

given a standard tagset. The tagset may be coarse such as N (Noun), V(Verb),

ADJ(Adjective), ADV(Adverb), PREP(Preposition), CON J (Conjunction) or fine­

grained such as NNOM(Noun-Nominative), NSOC(Noun-Sociative), VFlN(Verb

maximum

41

Finite),VNFIN(Verb Nonfinite) and so on [26]. Most of the taggers use only fine

grained tagset. Architecture of POS [26]:

1. Tokenization: The given text is divided into tokens so that they can be used for

further analysis. The tokens may be words, punctuation marks, and utterance

boundaries.

2. Ambiguity look-up: This is to use lexicon and a guessor for unknown words. While

lexicon provides list of word forms and their likely parts of speech, guessors analyze

unknown tokens. Compiler or interpreter, lexicon and guessor make what is known as

lexical analyzer.

3. Ambiguity Resolution: This is also called disambiguation. Disambiguation is based

on information about word such as the probability of the word. For example, power is

more likely used as noun than as verb. Disambiguation is also based on contextual

information or word/tag sequences. For example, the model might prefer noun

analyses over verb analyses if the preceding word is a preposition or article.

Disambiguation is the most difficult problem in tagging.

2.4 Identifiers and comments analyzing

Normally all method signature consist of a method name, which often is an action

word or it contains an action word, for an example update (), delete (), addTask ().

As well as all programmer writing the comments to describe the method before

defining a method. The leading comments also have action word which describes the

task of the method. Sometimes the action words in both comment and method

signature are semantically similar in computer science context, but not in typical

natural language documents. Matthew J. Howard and et al [27] proposed a technique

to automatically mine these semantically similar words from the leading comments

and method signature. First, they identified the leading descriptive comments through
42

analyzing that whether the comments describe the method or not. Then extracting the

action words in analyzed comments. They identified the set of potential verbs (i.e.,

actions) and then determined these verbs that are followed by a word that could be a

noun. These verb-noun sequences become a set of potential main actions documented

by the descriptive comment. They started by running Stanford’s Log-Linear Part-of-

Speech Tagger on the current comment phrase under analysis [27].

Then they checked if any of the non-verb tagged words in the phrase could be a verb

in the sense by checking if it could be a possible verb according to WordNet.

Sometimes the ‘unregister’ and ‘deregister’, are not found in WordNet, but ‘register’

is a potential verb as indicated by the WordNet. Then the prefix and suffix removed

by them, and then run the remaining partial word through WordNet to see if it can be

a verb. If so, they tag it as a verb. Then the Samurai (their earlier researched tool) used

by them to efficiently break a method into its component words. Then, WordNet is

implemented to quickly find possible word forms for the component pieces produced

by Samurai. POS tagger then assigns all possible POS tags - from a set of 14 including

singular nouns, base verbs, adjectives, past participles, etc. Then they analyzed the

comment-code word pair using a typical algorithmic NLP approach [28].

Madhuri.R et al. [29], developed a generic life-cycle model that can be used to improve

the software quality by exploiting CSEs. The model that combines code searching

through CSEs and mining common patterns of API usages from gathered code

examples. The model can be used to assist three main software development tasks:

(1) To learn about an API usage by automatically inferring programming rules (from

the mined patterns).

(2) To use mined patterns to detect defects in a program under analysis.

(3) To infer a fix that needs to be applied for a detected defect.

43

One issue with a larger number of code bases is that mining a larger number of code

bases is often not scalable. To address this issue, they propose a life-cycle model based

on code searching and mining.

So their approach has two major part such as searching and mining, searching part
contains two sub part such that query construction and duplicate elimination. To search

an API we need to set a well-formulated query, otherwise, CSEs will give the higher

number of irrelevant code example. After getting all result, that result set may have the

duplicate result, it means same source code can have a number of copies. On the one

hand, it says the code example is widely used and therefore the code example can be

trusted more than these code examples that do not have duplicate or multiple versions.

So it can bias the results of mining approaches that try to mine common patterns. So

using duplicate elimination they filtered out duplicate code. Then in the mining part,

they extract few pattern (it contains detail about API).

Normally the developer enters a query into a source code search tool. Depending on

the relevance of the results, the developer will reformulate the query and search again.

This process continues until the user is satisfied with the results. This novel approach

that provides automated support to the developer both in formulating queries and

discriminating between relevant and irrelevant search results. In this research, they

presented a novel approach to automatically extract natural language phrases from the

source code identifiers and method signature (method names, argument, etc) [28].

A tool PARSEWeb [30], is to download the source code interact with Google Code

Search Engine (GCSE). Also, after downloading the source code the tool will store the

code into the local code repository, and do the analysis to extract Method

Invocation Sequence (MIS). Then the tool will suggest few MIS to the programmer.

To search in GCSE, they used an approach that “Source-Destination’'. Normally the

programmers know what type of object that they need, but do not know how to get that

object with a specific method sequence. Their approach takes queries of the form

source

44

Source object type-Destination object type” as input, and suggests relevant method-

invocation sequences that can serve as solutions that yield the destination object from

the Source object given in the query.

Their tool contains a module called query splitter which is used for the situation their

approach accepts the query of the form “Source-Destination” and tries to suggest

solutions. If no possible MISs are found, their approach tries to split the query by

Source and destination separately and do the search again and get the result and do the

analysis. As well as their tool contains a module called Sequence Postprocessor, which

is used for MIS clustering. After the MIS extraction finish, the Sequence postprocessor

will do the clustering. Clustering of MISs helps to identify distinct possible MISs and

also reduces the total number of MISs. This reduction of the number of results can help

programmers to quickly identify the desired MIS for the given query. To further assist

programmers, the sequence postprocessor also sorts the clustered results [30].

Documentation of a software system is not updated due to time pressure and need to

reduce the costs. Consequently, the only up-to-date Source of information is the source

code and therefore identifiers and comments are key means to support developers

during their understanding and maintenance activities. Identifiers can highly affect the

code understandability and maintainability. The substring in a compound

identifier as a term, while an entry in a dictionary (e.g., the English dictionary) will be

referred to as a word. A term may or may not be a dictionary word. A term carries a

single meaning in the context where it is used, while a word may have multiple

meanings (upper ontologies like WordNet associate multiple meanings to words).

Identifiers are often composed of terms reflecting domain concepts [11], referred to as

“hard words

source

Hard words are usually concatenated to form the compound identifiers, using the

Camel Case naming convention, e.g., draw Rectangle, or underscore, e.g.,

draw rectangle. Sometimes, no Camel-Case convention or another separator (e.g.

45

Underscore) is used. Also, acronyms and abbreviations may be part of the identifier,

e.g., drawrect or pntrapplicationgid. The component words draw, application, the

abbreviations red, pntr, and the acronym gid (i.e., group identifier) are referred to as

soft-words . Often programmers build new identifiers by applying a set of

transformation rules to words, such as dropping all vowels (e.g., pointer becomes

pntr), or dropping one or more characters (e.g.,pntr becomes ptr) [7].

WordNet (which contains around 90,000 entries) or dictionaries used by spell

checkers, such as a-spell (which contains around 35,000 English words in a typical

configuration). Each dictionary word may be associated with a set of known

abbreviations in a way similar to a thesaurus. For example, the pointer entry in the

dictionary can be associated to abbreviations pntr, ptr found as terms composing

identifiers. Thus, if pntr is matched, the algorithm can expand it into the dictionary

term pointer. The overall idea is to identify near-optimal matching between substrings

in identifiers and words in the dictionary, using an approach inspired by speech

recognition. They take input xl, x2, x3... xn, and put it in x axis, yl, y2, y3....yn from

the dictionary, and put it in y axis [7].

Then they find the optimal match between the two vectors and, thus, the closest match

of the unknown input utterance with prerecorded dictionary entries. Using distance

measure they find shortest distance word, here distance is often the Euclidean distance

between feature vectors. They use the transformation rules to match the word, the

available transformation rules are the following: Delete all vowels: All vowels

contained in the dictionary word are deleted, e.g., pointer —> pntr, Delete Suffix:

suffixes—such as ing, tion, ed, ment, able—are removed from the word, e.g.,
improve; Keeping the first n characters only, the word is transfonnedimprovement

by keeping the first n characters only, e.g., rectangle —> rect for n = 4 Delete a random

vowel: one randomly chosen vowel from the word is deleted, e.g., number —> numbr:

46

Delete a fandom character: i.e., one randomly-chosen character is omitted, e.g.,pntr

ptr [7].

Developers spend the majority (80%) of their time to maintaining the source code,

both industrial and open source developers often submit their code for review prior to

check-in [31]. Unfortunately, programmers are often unaware of coding conventions

because inferring them requires a global view, one that aggregates the many local
decisions programmers make and identifies emergent consensus on style.

NATURALIZE [31], a framework that solves the coding convention inference

problem for local conventions, offering suggestions to increase the stylistic

consistency of a code-base. NATURALIZE can also be applied to infer rules for

existing rule-based formatters. NATURALIZE is descriptive, not prescriptive: it learns

what programmers actually do. When a code-base does not reflect consensus on a

convention, NATURALIZE recommends nothing, because it has not learned the thing

with sufficient confidence to make recommendations. As NATURALIZE detects

identifiers that violate code conventions and assists in renaming. It is the first tool they

are aware of that uses NLP techniques to aid refactoring. The techniques that underlie

NATURALIZE are language independent and require only identifying identifiers,

keywords, and operators, a much easier task than specifying grammatical structure

[31].

2.5 Analyzing our research with related researches

Few amount of research are slightly related to our research but not flilly. As well as

the researchers did not start with a Software architecture, instead of start with a

Software architecture, they start with the source code searching. In source code

searching, few of researchers are suggesting the keyword searching as well as few of

them are giving negative feedback to the keyword search. However, we recommend

for the keyword search because we start our task from a Software Architecture. The

Development process will start from a Software Architecture, so we started with a

47

Software Architecture, as well as we can get few information as keywords from the

Software Architecture. The source code searching process should be in the

development process because of that we will have keywords in development process

after designing process, so keyword search method is suitable search method for

code searching. In several research, the researchers are telling the reason of

rejecting keyword code searching is getting few irrelevant code with relevant code

when they do the source code search. But we have developed a solution via our

developed framework to overcome the issue.

source

Most of the research are starting with code search and finishing with downloading the

relevant projects or source codes. Most of the research are not analyzing the result after

downloading process, but in our research, a big part of the research are analyzing the

results. And few of the research are starting from source code analyzing, in the research

the researchers did not include code searching. Nioosha Madani, Latifa Guerrouj, and

et al. [7], used Dynamic Time Warping technique to recognize the words from the

Source code, as we discussed the technique in section 2.3.2, DTW is a speech

recognition technique can be used to identify the real words from the composite

identifiers and we can use this technique to identify the words from the abbreviated

word terms. We followed their approach in our research but using DTW, it took more

time to identify the real words from the identifiers. As well as it did not identify the

real word for some abbreviated term derived from the identifiers, then we used N-gram

technique and Stanford SpellChecker to identify the real words from the identifiers.

We used the GitHub API which is not used in the related research to our research. As

discussed in section 2.2.1, the GitHub provides an API to researchers and

programmer as open source, to integrate the API into their own project. Using the API,

do all GIT activities as well as we can do a few additional things, such as, if

want to have all repositories names in the GitHub, all particular programming

language repositories (such as all java projects name, and all C++ projects names), and

all file names (such as all .java file names, and all .c file names) we can have that.

we

we can

we

48

Using the GitHub API, we can reduce the time to download unwanted projects which

mean, it will check the repository names with the keywords and then download the

projects. In this way, we can reduce the number of unwanted projects in the

downloading process, so we will reduce the time to analyze the downloaded projects

to identify the most relevant project among them. Even though we integrated GitHub

API, it will download most relevant projects and slightly relevant projects. We need

to analyze further to identify the most relevant projects.

49

Chapter 3

Research methodology and Proposed Framework Architecture

3.1 Research Methodology

As it is indicated in the title, this section includes the research methodology of the

dissertation. In order to satisfy the objectives of the dissertation, a qualitative research

held. The main characteristic of qualitative research is that literature revive. As

we discussed in the section 2.5, there were no actual related research to our research

but partial work of our research had done by some researchers. We launched the

research 2017 may 05 officially, but we started the literature revive before two month

to the launching of the research.

was

After finishing the literature revive we designed our research and we submitted the

proposal of our research. We spent around six month for literature revive and design

process. After the designing process, we started to develop an algorithm to find the

answer of research question on 2015 October 10. We spent two month to develop the

algorithm. And then, we started the implementation part of our framework on 2015

January 01. And then we spent around ten month for implementation and initial

testing. After the implementation, we collected some sample data (sample projects)

from Git version control system.

Finally we started the evaluation of our developed framework with the collected

sample data. We did the evaluation manually, even though our algorithm will do the

proposed work automatically, we needed to check whether the algorithm worked

properly, that is what we had done the evaluation manually. We started the evaluation

2016 November and we finished the evaluation 2017 February 11. In the evaluation

part, we targeted five projects from GitHub, and we checked whether the developed
on

50

framework identify the targeted five projects, finally we conclude that the developed

framework was working successfully.

Designing and implementing the framework were the very problematic and time

consuming tasks, in which we spent considerable time on the GitHub integration and

analyzing the downloaded projects from the forges. Our framework consist of 10

module to carry out the tasks such as, Extract the information from the Software

Architecture (class diagram), Download the projects (crawl the projects) depend on

the information from the class diagram, Decompress the downloaded projects in the

compressed format, parse all the Java classes into the Abstract Syntax Tree to access

the identifiers and the comments, identify the meaningful words from the identifiers,

identify the action words from the comments, analyze the words and the information

of the class diagram, and then rating the relevant .java files.

As we mentioned earlier the GitHub integration consist of few sub-modules such as

the project name dumber, and the class name dumber. Figure 2.6 and Figure 3.1

describe the modules of our framework.

This chapter provides a depth details of our design, developed module and their

process as well as how they interact with each other. Next chapter will detail on the

implementation of the each module and used existing tools. Section 3.1, describes the

XML parser and its usages. Section 3.2 describes the GitHub API integration and its

usages. Section 3.3, describes three types of crawlers we developed to download the

relevant project from the internet depend on the information from the class diagram

and the de-compressor to extract the downloaded projects. Section 3.4 describes the

Abstract Syntax Tree and its usage in this research. Section 3.5 explains types of

identifiers, and the splitter for the composite identifiers to extract the string terms or

the words separately from the identifiers. Section 3.6, describes the developed spell­

checker, the word-finder and their usage in our research. Section 3.7 describes

analyzing the comments in the source code and extracting the action verb from the

code. Section 3.8 describes the final module of our developed framework thatsource
51

is matching and rating module. Finally, Section 3.9 summarizes our all developed

module and their process as well as their interaction.

Software
Architecture

Inormations from
XML fileXML FILE ►

Software
Architect

Extract iformations
& comments

Parse each .java
files into AST

Crawl Projects
from Forges

<■

1
Identiy Real
Words from
Identifiers

Extract Action
words from
comments

Developer

er*

Suggest highest
marks .java file

Match with XML
info & Rating >>

Figure 3.1: Overview of our System

3.2 XML Parser

XML Parser provides a way how to access or modify data present in an XML

document. Java provides multiple options to parse the XML document. Following are

various types of parsers which are commonly used to parse the XML documents [32].
52

• Dom Parser - Parses the document by loading the complete contents of the document

and creating its complete hierarchical tree in memory.

• SAX Parser - Parses the document on event-based triggers. Does not load the complete

document into the memory.

• JDOM Parser - Parses the document in a similar fashion to DOM parser but in an

easier way.

• St AX Parser - Parses the document in a similar fashion to SAX parser but in more

efficient way.

• XPath Parser - Parses the XML based on expression and is used extensively in

conjunction with XSLT.

• DOM4J Parser - A Java library to parse XML, XPath, and XSLT using Java

Collections Framework, provides support for DOM, SAX and JAXP [32].

Our framework start the process from an XML file (Software Architecture in the XML

file format) because, XML files are easy to share the data and the information in

programming. Software architectures can be saved into the XML file format where all

the designing tools have that facility. So we start our objective from a XML file, we

need to extract few information from the file, because we recommend the keyword

searching, which are grabbed from the XML file. In this research, we focused only on

the class diagrams as Software architecture. When we have a class diagram in XML

file format, the file will be very big and which is difficult to identify the information

of the class diagram. Because of that we decided to use one of the XML parser we

mentioned above. If we parse the XML file into the parser, it will represent all the

information in a hierarchical order. Root of the class diagram represents the class

name, first child level represents the method names, and the other child levels represent

the attributes. In this way we can extract all the class names, method names, and

attribute names separately and easily.

* https://www. tutorlalspoint. com/java_xml/java_xml_parsers. htm [53]

53

https://www

3.3 GitHub API Integration

This module explains about the integration of the GitHub API to achieve the objective

described in section 2.2. This module includes two sub-modules such as the Java

projects name dumber, and the Java class names dumber. In this research we focused

only on the Java projects, therefore, we developed these sub-modules. Each module

deal with the GitHub web-pages to make two repositories.

3.3.1 Java project names dumber

GIT version control system contains a billion numbers of projects written in JAVA,

C++, C#, VB.NET, and few other programming languages. When we try to retrieve

the projects written in a particular programming language will be impossible without

the proper information about the projects such as author details of the projects, created

date of the projects, and the name of the projects. According to our GitHub API

implemented System Overview in Figure 2.6, we extract the information from the

XML file (Software Architecture (class diagram)), and then we need to download few

projects depend on the information. If we try to download the projects using the

information (class names, method names, and attribute names) as keywords in the

keyword searching technique, we will download a huge amount of projects. Even

though we intended to download the relevant projects, we have to download more

irrelevant projects. It will be a very big task to find the relevant projects among the

huge number of irrelevant projects. Also, it is a time-consuming task, analyzing the

irrelevant projects and we have to pay for internet data usage to download these

projects.

Sometime, we will suggest a few amount of irrelevant projects while analyzing the

downloaded project. If we suggest the irrelevant projects the entire development

will be delayed, then the developer need to speed up the development,process

54

therefore, the speed up will affect the quality of the product. Therefore we can prevent

the problems discussed above by downloading the predefined projects where

avoid to download the unwanted projects. We need to have all the projects name in the

GIT version control system to predefine the projects. Therefore, we developed the Java

project names dumber module with the GitHub API to predefine the projects are to be

downloaded. We can dumb all the Java project names using this module, then analyze

the project names and the information retrieved from the XML file (class diagram),

and then we will get the relevant project names which are to be downloaded.

we can

3.3.2 Java class names dumber

As the GIT version control system contain a billion numbers of projects, each project

contains a lot of source code files. For an example, each Java projects contain hundreds

of .java files and big projects may contain thousands of .java files. If we need to

predefine the projects are to be downloaded, we cannot predefine without analyzing

the project repository with the information from the class diagram. We will dumb only

all the Java project and exclude the details of the .java file of the projects using project

names dumber, so we need to extract few more information about the projects.

Therefore we developed this Java class names dumber module with the GitHub API

to dumb all .java file names belongs to all Java projects available in the GIT version

control system.

With the help of the GitHub API, this module will make a repository to store all the

.java file names into our local machine. When a class diagram enters to the

implementation phase, information of all the classes in the class diagram will be

extracted using our XML parser module. On the one hand, we will have the

information from the class diagram (the class names, the method names, and the

attributes names) and on the other hand, we will have all the .java file names using this

module, and then we will identify the relevant class names from the created repository
55

using this module by analyzing the both information. While we try to get all the .java

file names we will get few more information by the API such as project names of the

file names, author of the project, repository created date in GitHub, the number of

commits, and few other information. We will find the class names and related project

after the analyzing process. And then, we will download the predefined project

list. We will attain the following advantages by the usage of this module such as, we

give a solution to the problem we discussed in section 3.2.1, we can save our valuable

time instead of wasting with the irrelevant projects, and we will reduce the money cost

by preventing the download of the irrelevant projects via saving the internet data.

names

3.4 Crawlers and Decompressor

We discussed about the crawler in section 2.2.3. As we discussed, we developed three

types of crawlers to fetch the URL of the projects to be downloaded using the keywords

from the class diagram. In this research, we focused only on three types of forges such

as SourceForge [1], GitHub [6], and GoogleCode [2]. These three types of forges are

different with each other, therefore, we developed separate three types of crawlers for

three types of forges. We used the JSOUP Java API to develop these crawlers. While

we use these crawlers, we need to give a seed URL, the crawler will start the crawling

from the URL and go ahead. We have given www.Sourceforge.com,process

www.github.com,www.googleCode.com as seed URLs to our crawlers.

Web pages are connected together, one web page is linked to another page using

hyperlink and anchor text. For an example, if we want to include another web page in

our web page we can’t copy and paste all the data from that web pages into our web

The following fragment of HTML code from a web page shows a hyperlinkpage.
pointing to the home page of the Journal of the ACM: <a hreT="http://www.acm.org

/jacm/M>Joumal of the ACM. In this case, the link points to the page

http://www.acm.org/jacm/ and the anchor text is Journal of the ACM. Clearly, in this

56

http://www.Sourceforge.com
http://www.googleCode.com
http://www.acm.org
http://www.acm.org/jacm/

example, the anchor is descriptive of the target page. But then the target page

(http.//www.acm.org/jacm/) itself contains the same description as

considerable additional information on the journal [20].
well as

anchor
*

Figure 3.2: Web graph joined by a link [20].

We can view the static Web consisting of static HTML pages together with the

hyperlinks between them as a directed graph in which each web page is a node and

each hyperlink a directed edge [20]. Figure 3.2 shows two nodes A and B from the

web graph, each corresponding to a web page, with a hyperlink from A to B. We refer

to the set of all such nodes and directed edges as the web graph. Figure 3.2 also shows

that (as is the case with most links on web pages) there is few text surrounding the

origin of the hyperlink on page A. This text is generally encapsulated in the href

attribute of the <a> (for anchor) tag that encodes the hyperlink in the HTML code of

page A, and is referred to as anchor text. As one might suspect, this directed graph is

not strongly connected: there are pairs of pages such that one cannot proceed from one

page of the pair to the other by following hyperlinks. We refer to the hyperlinks into a

page as in-links and these out of a page as out-links. The number of in-links to a page

(also known as its in-degree) has averaged from roughly 8 to 15, in a range of studies.

We similarly define the out-degree of a web page to be the number of links out of it

[20].

57

http://www.acm.org/jacm/

First of all, our XML parser will extract the information (class names, method

and attribute names) from the class diagram, and then the crawlers will use this

information as the keywords. The crawlers will start the crawling process with the seed

URLs and the keywords if anything in the web pages matches with the information

extracted from the class diagram, and if it is a link, the crawlers will fetch the link’s

URLs. Likewise, the crawlers continue the process for all the information of the class

diagram or until the crawler reaches dead-ends. After fetching all the URLs to a set

data structure, the module will analyze the fetched links and check whether the links

are a file (it means project file will be in compressed file format) or dead-ends or the

normal link. If it is a file link, that file will be downloaded and saved into the local

repository.

names,

After the crawling process, we will have a few amount of relevant projects. All forges

are giving the download facility for the project in compressed file format. So all the

downloaded project will be in compressed file format, as it is in the compressed format,

we cannot do any operation on it. Our approach is in source code level, so we need to

deal with all the .java files, all .java files and few other configuration files are

combined together inside the compressed file. For that purpose, we developed

decompressor module. This module extracts the compressed project in the format such

as .zip, .rar, .gz, .7z, and etc.

3.5 Abstract Syntax Tree

The representation of the source code as a tree of nodes representing constants or

variables (leaves) and operators or statements (inner nodes). Also called a "parse tree".

An Abstract Syntax Tree is often the output of a parser (or the "parse stage" of a

piler) and forms the input to semantic analysis and code generation (this

a phased compiler; many compilers interleave the phases in order to conserve memory)

assumescom

[33].
58

Note that the Abstract Syntax Tree reveals the lexical/syntactical structure of the

program text - what blocks and statements are lexically contained within in what. This

may - or may not - be related to the semantic structure of the program. For example,

in most OO languages with inheritance, the inheritance hierarchy is not revealed by

examining the arrangement of the AST [33].

Abstract syntax trees are data structures widely used in compilers, due to their property

of representing the structure of program code. An AST is usually the result of the

syntax analysis phase of a compiler. It often serves as an intermediate representation

of the program through several stages that the compiler requires, and has a strong

impact on the final output of the compiler. Following code can be represented in an

Abstract Syntax Tree, Figure 3.3 shows the Abstract Syntax Tree [33].

Our approach is in source code level, after de-compressing all the downloaded project,

we will have a huge amount of projects, and so we need to identify the most relevant

projects from the project pool. We will get following information from the class

diagram such as class name, method names, and attribute names. So we need to access

all the identifiers from the downloaded projects to compare with the information from

the class diagram. If the identifiers and the information are matched then an amount of

marks will be given to the respective .java file. If the total mark of the .java file is over

the threshold marks, we will suggest the .java file to the developer as relevant source

code. Following paragraph is a quote of our research.

“Program identifiers are a fundamental Source of information to understand a

software system. Because programmers choose program names to express the

concepts of the domain of their software. (Methods, classes, fields). [34] ”

Also, we extract few action word from the comment because the task of a class or a

method will be described by the developers through the leading comments of the class

or the methods. The leading comments of the methods will explain the whole process

of the methods. It will be difficult to understand the code in a situation, when another

59

developers read the code or the same developer try to edit the code after a long time.

They will understand the context of the code when they read the comments. Also most

of the methods are doing the action (delete, add, send, and etc). Therefore all the

developers are selecting an action word as the method identifiers. Also, they use an

action word in the comments to describe the methods. We developed a sub-module to

extract the comments from the source code using the Abstract Syntax Tree.

while b±0
ifa> b

a := a - b

else

b := b-a

return a

60

strata m

while
return

condition

compare
op: ^ j variable

name: a

variable
name: b

constan'
value: O

condition if-body else-body

compare
op: re­ assign assign

•variable]

name:
•variable
name: a

variable
name: a

bin op
op: —

variable
name: b

bin op
op: —b

variable
name: a

variable
name: b

variable
name: b

variable
name: a

Figure 3.3: Abstract Syntax Tree example [52]

3.6 Identifier Splitter

Source code identifiers such as names of classes, interfaces, methods or functions,

variables and formal parameters or arguments can be viewed as a sequence of

characters (a string) consisting of one or many tokens [35]. The tokens or terms which

constitutes an identifier can be a word (a word in a standard english dictionary), well-

known and commonly used acronyms (such as the country USA or the company IBM

and even short-forms like Mr. or max) or domain-specific abbreviations (such as str

for string, pntr for pointer, rect for rectangle)[35]. Program identifiers are a

fundamental Source of information to understand a software system. Because

programmers choose program names to express the concepts of the domain of their

61

software, this natural language

insights into developers’ intent [28].

In the programming context, all the identifiers such as class names, method names,

and attribute names should be unique and meaningful, because if we take a project it

contains more than one class, so we want to differentiate all the class to handle the

Object Oriented Programming concept (inheritance, abstraction, and polymorphism).

Also, if we consider a source code file, it contains more than one method, and attribute.

So all the methods and attributes should be different for the method calling and the

variable using.

component of the program provides the reader with

All developers and programmers are lazy when they produce the identifiers.
Sometime, they shrink a word. For an example, they shrink the word “delete ” into

“dlt”, and the word “remove” into “rmvIn this way, they create the abbreviated

word to produce the identifiers. Java naming convention is a rule to follow as you

decide what to name your identifiers such as class, package, variable, constant, method

etc. But, it is not forced to follow. So, it is known as a convention not a rule. Constants

name should be in uppercase letter. E.g. RED, YELLOW, MAXjPRJORITY etc, and

some other naming convention should be followed when naming another variable. But

some of the programmers and the developers are not following these conventions.

A research shows that a significant percentage of identifiers in source-code do not

contain explicit markers between tokens and this makes the task of identifier splitting

as non-trivial. For example, Butler et al. [32], performed analysis of a sample dataset

and found that approximately 15% of the identifiers in the sample dataset are non­

trivial to tokenize because of lack of explicit markers (all lowercase and all upper-case

letters without the underscore or special symbol to separate concepts) and presence of

abbreviations, non-dictionary terms and unconventional usage of capitalization and

digits [32]. The developers need to follow the Naming Convention, such as Camel
Naming convention when they connect more than two abbreviated terms to create an

case

62

identifier, for

createTempTable or
an example, isDeccending, is Primary Key, display ingEvents,

the explicit splitter (_, $, number, etc), for an example,
remove_file, add$tow, search6key. It will difficult to identify the dictionary words

from these types of identifiers. If we want to get the meaningful words from the

identifiers we must split the composite words. Then only we can identify the

meaningful words from the split terms.

For this purpose, we developed a module to split composite identifiers into separate

string terms or words. If they follow a naming convention or the explicit separator in

identifiers, our identifier splitter is enough to split. But, if they do not follow the

naming convention to create the identifiers, it will be a significant challenge to split

the identifiers. We have developed an algorithm using the NLP technique for this

challenging process. The algorithm will be discussed in the following sections. We

will parse all the identifiers into this Splitter module after extracting all the identifiers

from the class diagram. It will split the good identifiers which follow any naming

convention into the string terms. Otherwise, it will give the same identifiers as a result

which is bad identifier does not follow any naming convention. String terms may be a

meaningful dictionary words or just a string token. If it is a meaningful dictionary word

we will directly take the word into matching process. Otherwise, the token will be sent

to the next process to identify the meaningful word from the token.

3.7 Spell Checker and Word Finder

As our approach is based on the identifiers, we need to analyze the identifiers to get

the meaningful dictionary words from the identifiers. We will get three types of the

result after the usage of the identifier splitter module. The first type may be the

meaningful English dictionary word, the second type may be a string token (we need

to identify the meaningful dictionary word of the tokens). And the third types may be

the bad identifiers which do not follow the naming convention. E.g. nummessg
63

(“number” and “message” words

“counter” words
are connected together), wrdcntr (“word” and

are connected together). It is very difficult to identify the meaningful
dictionary word from the third types of the result.

3.7.1 Spell checker for Good Identifiers

Good identifiers which are following any naming convention whether the Camel Case

naming convention (rmvFle, dteRow, and sndMssg) or the explicit separator

(sleect_name, fnd$value, and get8rslt). We parse these type of identifier into

splitter, it will split the identifiers where the Camel Case or explicit separator is started

in the identifiers. This process will return two types of results such as meaningful

dictionary words and string tokens. As we discussed earlier, the programmers are lazy,

they shrink the meaningful words into the string tokens and then they connect more

than two string token together to produce an identifier (E.g mkeReqst, strReader). If it

is a dictionary word, the word will be sent into matching process, for an example,

removeFile will be separated “remove ” and "file ” (both are dictionary words, so these

words will be sent to the comparing process to match the words with the information

of the class diagram).

our

If it is not a meaningful dictionary word, it means a string token such as rmvFle will

be split into rmv and fle, both words are not dictionary words. As a human, we will

realize and identify the word “remove” to the token "rmv” and the word "file” to the

token "fle ” using our intelligence. But the computer is an electronic machine it cannot

think. So we need to give this power artificially to the computer using machine learning

techniques or Natural Language Processing techniques. First, we used a machine

Dynamic Time Warping (DTW) and we found fewlearning technique that

drawbacks. And then, we used an NLP technique (N-gram) to overcome the drawbacks

was

while the usage of the DTW technique. Using the N-gram NLP technique, the machine

identifies the meaningful dictionary word to the string token. The machine could not
64

fy e exact word when it tries to identify the dictionary word, rather than it will

suggest the related words including the exact word.

3.7.2 Word Finder and Spell checker for Bad Identifiers

Bad identifiers which

more than two word

into abbreviated tenn and

not following any naming convention, but it may contain

or one word in abbreviated form. Developers shrink the words

connect more than two abbreviated terms together to

produce an identifiers without following the naming convention. For an example,

when we take above mentioned example rmvfle, it contain two abbreviated words, as

are

a human we can understand these two abbreviated words and its original dictionary

word, but computer cannot understand because it does not have thinking power. As

well as there are no any algorithm or technique to find these meaningful dictionary

words. But Nioosha Madani, et al. [7], developed an algorithm based on a modified

version of the Dynamic Time Warping (DTW) (is a machine learning speech

recognition algorithm, read the section 2.3.2 for further details) algorithm proposed by

Ney for connected speech recognition [36] (i.e., for recognizing sequences of words

in a speech signal) and on the Levenshtein string edit-distance [37]. We followed their

algorithm, sometime, their algorithm gives wrong word as a result to a particular string

token. Also it could not identify the meaningful dictionary word to a particular string

token. As well as the time consuming was very high. The time cost is very less when

compare with the usage of the DTW technique with the NLP technique.

If the algorithm lead to find the irrelevant dictionary word for a particular string token,

it leads to select the irrelevant source code as a relevant source code. And then the

developers will use the source code as a pillar to their project. They will realize that

the source code is irrelevant in the middle of the development, so it will be a very big

time waste. For that reason, we developed an algorithm to overcome above mentioned

challenges using N-gram technique (Read section 2.3.1 to understand the N-gram

65

technique). We developed a Spell-Checker and a dictionary to identify the meaningful

words from the string token extracted from the identifiers. We used the Stanford

SpellChecker as a pillar to develop our SpellChecker. Our SpellChecker gives 10

words for each string token. So usage of Our SpellChecker increases the number words

to be checked with the information of the class diagram. We will discuss deeply about

this 10 word list in Evaluation chapter. The algorithm is following, as well as see the

Figure 3.4 for further explanation.

• If the identifiers is a good identifiers (it follows whether the camel case or the

explicit separator in naming convention) split the identifier using our splitter.

• If the split terms are meaningful dictionary word, send it into comparing process.

• Split terms are string token, send it into our spell-checker and identify the

meaningful words, and then send it into comparing process.

• If the identifier is a bad identifiers, and the token length is > 2, use 2-gram to make

the chunk and check the spelling.

• If the SpellChecker identify the word, send the word into comparing process,

remove that chunk and repeat the work.

• If the Spellchecker do not identify the word, increase the N by one in the N-gram

technique and repeat the process until the length of the words is equal to N.

66

Start

//rfgoo<rs
Identifiers 'i token'

length»2
no no

yes
yes

make chunk using
N-gram (N=2)

Check using our
Spellchecker->

Split using our
Splitter !al wore

found
Increase the N byno

one

yes
Remove the chunk
belongs to found

word✓Split terrrN. no
js real word/1

Check using our
SpellChecker

Sal wore
found

no

yesyes

Matching and marks
giving process

yes

Figure 3.4: Overview of our proposed algorithm

3.8 Action word extractor for comments

Action verb used in the descriptive leading comment for a method is semantically

similar to the action verb used in the signature of the documented method. Descriptive

leading comment to be a comment block placed before a method signature that

provides the reader with the overall summary of a method’s actions. That is, a

descriptive comment describes the intent of the code succinctly [27]. So comments

will explain the task of a method or class. If we identify the action verb from a

67

comment block, the words or its synonyms and method signature will have the same
meanings or related words (hypemyms, hyponyms, and etc). For an example, “// add

a word to a file”, is the comment, add Word (String wrd) or pul Word (String wrd), i, is a
method signature. In above-mentioned comment and the method signature, the action

verb from the comments is “add” and the action verbs of the method are “add’ and
put . In the computer context, the “add” and “put” are the same word, if one of the

words will be matched with the words from the class diagram. Likewise, few

synonyms will be in the comment and the method signature.

We used the Stanford Part of Speech tagger as a pillar to develop this module. The

purpose of this module is to tag all the words whether the words is a verb or a noun or

etc. If it tags as a verb, this module adds the words to the word pool which is extracted

from the identifiers of the class diagram. In the matching prowzbcess, these action

word will be analyzed as the identifiers. If we take the comments to analyze, we will

increase the relevancy and reliable.

Algorithm 3.1 Split the Identifier and SpellChecker

1: function Splitting and Spellchecking function

Input: Source code identifier(x)

if x = = goodldentifiers

String token = Split(x)

If token = = dictionary Word

return dictionaty Word

else parse token into SpellChecker

return word

else return badldentifiers

9: end function

2

3

4

5

6

7

8

10: function Chunking the bad identifiers and Comparing

68

InPut- bad identiiers ~ ------- ---------------

Input: information from class diagram(y)

Input: Mi (initial marks)

chunking the bad identifiers using N-gram

check the chunk with SpellChecker

if chunk = = dictionary Word

return dictionary Word

remove the chunk

repeat the process

else increase the N by one

repeat the process

If.y matched with dictionary Word

M = Mi + 100/N

if marks >= 50%

return class

11
12
13
14
15
16
17
18
19
20
21
22
19: end function

3.9 Matching and marks giving

After completing all the process in the algorithm, we will have two types of

information. On the one hand, we will have the information which is extracted from

the class diagram, and on the other hand, dictionary words which belong to all the

identifiers and all the string token extracted from the identifiers. The problem is we

need to identify the most relevant .java file through a comparing process of above

mentioned two hands of the information. The developed module will take one word

from the identifiers extracted from the .java files which are downloaded from the

with the information from the class diagram. If the twointernet, and then compare

69

i
V

<-
£> t.-w.

atched, an amount of marks will be given to the .java file belongs to the

compare words. Following formula is used to give the marks to the matched words.

M = Mi + (100/N)

1" (1)’M is denoted the marks is to be given for the .java files, Mi is denoted the initial

marks for every loop iteration. N is denoted the number of identifiers extracted from

the .java files which are downloaded from the internet and 100 for convert the marks

into the percentage. Using the above equation, we calculate the marks for every

matching word, after finishing all the calculation, if the mark is greater than 50%, the

.java file will be selected to suggest as most relevant source code. Likewise, every

.java file from the downloaded directory will be analyzed and suggested.

(1)

3.10 Summary of all module and process

As we discussed earlier, our developed framework starts with an XML file, all the

software Architecture can be saved in the XML file format using the designing

software tool. We focused only on the class diagram in this research. So if the

developer needs to use our system they need to enter the class diagram in XML format.

When we save a class diagram in the XML file format, it will consist of several lines

of text, it will difficult to extract the information about the class diagram. We

developed an XML parser module to parse the XML file and extract the information

(class name, method name, and attribute name) from the file. As we discussed earlier,

there are several forges, having a billions number of Open Source software repository

such as SourceForge [1], GitHub [6], and GoogleCode [2], We focused only

three types of forges to download the projects. We need to download the projects from

the forges depend on the information extracted from the class diagram. We developed

three types of the crawler to fetch the projects from the three types of forges related to

the information of the class diagram.

on these

70

Depend on the information of the class diagram, our three types of the crawler will
download a hug. amount „f relaled projWs, ^ ^ downloaded

include the m ost relevant projects along with more irrelevant projects. In this research,
we focused only on the Java projects. We developed two modules using the GitHub

API to reduce the amount of the irrelevant projects. The first module is Java Class
Name dumber, it dumbs all the .java file name from the GitHub forge, the second
module is Java Repository Name dumber, it dumbs all the Java project

GitHub forge. These two modules will take the information from the class diagr
name from the

am
one by one, and then compare with the Java Class Name list of the GitHub, if the class

matches with the information, it will retrieve the respective projects name from

the Java Repository Name list. Finally, download the project from the GitHub forge.

In this way, we can reduce the number of the irrelevant projects to be downloaded.

Just we reduce the number of the irrelevant projects from GitHub, we cannot prevent

name

completely. Also, a more irrelevant project will be downloaded from the SourceForge

and the GoogleCode. So the crawler module downloads a huge amount of the project,

next step is finding the most relevant projects from the group of the downloaded

project.

We cannot check the relevancy in project level, we need to check the relevancy in the

source code level. Our next module is the De-compressor, because, all the downloaded

projects will be in the compressed format. We cannot do any operation on the projects

as the projects in the compressed format. So we need to extract all the project ffom the

developed De-compressor module extracts all thecompressed projects,
downloaded project. After extracting all the projects, each project will include an

our

access all the identifiers from theamount of .java file. The next step is that we need to

code to analyze the relevancy. For that purpose, we developed a module

code into the Abstract Syntax Tree (AST), it will parse
Java source

which represents all the source
all the .java file into AST. And then, we can access all the identifiers (class name,

method name, and attribute name) As we discussed earlier, extracted identifiers will

71

be in two types, one is the good identifier

another one is the bad identifier which does

programmer are lazy, therefore, they do

the words into the abbreviated term and

produce an identifier.

which follows any naming convention, and

not follow any naming convention. All the

not use the full meaningful word. They shrink

connect more than two abbreviated terms to

Identifying the meaningful word from the tw

challenge. For the composite identifiers,

identifiers which are following any naming convention such as the camel

convention or

o types of the identifiers is the next big

developed a splitter which splits thewe

case naming
the explicit separator (the symbol /, & and numbers 1-9). Our

developed splitter will split the identifiers where the camel case or the explicit

separator is started. After splitting the good identifiers, we may have an amount of the

meaningful English words and the words will be sent to the comparing process, as well

as we may get an amount of the string tokens. We developed the Spell-Checker to

identify the meaningful words from the string tokens. It will identify the meaningful

words from the string token using a dictionary. And then, we send the identified word

to the comparing process. The next big challenge is identifying the meaningful words

form the bad identifiers, developer shrinks the words into the abbreviated terms and

then they connect two or more abbreviated term together to produce an identifier

without following any naming convention. It is a very difficult process to identify the

meaningful words from the bad identifiers.

We developed an algorithm to solve the above-mentioned problem by using the N-

NLP technique. Refer the Algorithm 3.1 for further understanding. The algorithm

identify the meaningful words from the bad identifiers. Additionally, we

developed a module using the Stanford Part of Speech tagger to analyze the comments

code. The module will identify the action verbs from the comments,

it will send the action verb to the comparing process. Finally, we developed

pare the information extracted from the class diagram and words from

code from the downloaded projects. If the word matches with the

gram

will

in the Java source

and then

a module to com

the Java source
72

information of the class diagram, an amount of marks will be given to the .java file. If

the total mark is greater than 50%, the .java file will be selected as a relevant source

code and suggested to the developers.

73

Chapter 4

Implementation

A major part of our research implementation, a lot of the task needed to be
implemented because ibis is a very big research and a lo, of things wanted to lest with

source code level to identify the relevant source code.

or system exist but some part of our research

amount of research but not fully related. The GitHub API
integration took considerable time, because that was a new thing in Git forge. As well

as we

that is the reason, we shifted the implementation to the N-gram technique to solve the

problem we faced in the DTW usage. We used some other APIs and software tool, all

will be discussed in this chapter.

was

the coding. We did analyze in

There are no any actual related research

were related to a few

implemented the DTW technique and then we found some error and time cost,

This chapter provides the details of the implementation of the developed module of

our developed framework as well as several API usages and several tools used to

develop our framework. Section 3.1 describes the programming language used to

develop our framework and the reason to select the language, used IDE, and then

implementation of XML parser and the API’s module used to develop the parser.

Section 3.2 describes the GitHub API integration and the challenges faced in the

implementation. In section 3.3, we describes the implementation of three types of

crawler we developed to download the projects from the internet depend on the

information from the class diagram and the de-compressor to extract the downloaded

projects. Section 3.4 describes the implementation of Abstract Syntax Tree. Section

3.5 explains the implementation of splitter for the composite identifiers to extract the

meaningful words from the identifiers. In section 3.6, we describe the implementation

of the spell-checker and the word-finder. Section 3.7 describes the implementation of

the action verb Extractor from the comments. In section 3.8, we describe the

74

implementation of the final
and rating module.

module of our developed framework that is the matching

4.1 Implementation of XML Parser

We used Java programming language for all
lot of Java existing APIs

our implementation because we used a

as well as Java programming language is a convenient
language to develop the client server application. We developed three types of crawler

using the JSOUP Java library. Usage of the JSOUP library makes the development of

the crawlers easy. Even though the GitHub API available in several languages, a good

documentations are available only for the Java API. We used the HTTPCIient API to

make the HTTP request, the implementation of the HTTP request was very easy and

no any other configuration needed. We used Java programming language because of

some other advantages than using other programming languages. We used the Eclipse

as IDE (Integrated Development Environment), usually an application that combines

the text editor, the debugger and other essential tools to enable developers to write

applications. Eclipse IDE is "an open Source, robust, full-featured, commercial-

quality, industry platform for the development of highly integrated tools and rich client

applications". Although the Eclipse Platform is written in Java programming language,

it supports plug-ins that allow developers to develop and test the code written in other

languages.

Our first implemented module is XML Parser as our suggested framework start with a

Software Architecture (We focused only on the class diagram in our research) in the
framework needs to read the XML file and then extract the

method names, and attribute names) from the file. It is
XML file format, our

information(class names,
portant to understand how the XML stores and describes the information in it before

to implement an application to read an XML file. The XML is , mark-up language and
im

75

it uses custom tags to describe

hierarchies to
the data it is ,

re comPlex data types.
storing. Tags can be nested, creatingrepresent mo

<?xml version="l.O"
<library>

encoding=,,UTF-8"?>

<book>
<author>raja</author>
<page>50</page>
<color>black</colo

</book>
<book>

<author>kamak/author>
<page>100</page>
<color>red</color>

</book>
<book>

r>

<author>kumar</author>
<page>150</page>
<color>green</color>

</book>
</library>

Consider the above example of the XML code snippet, It can be seen that between

opening and closing book tags (<book> and </book>) there are more tags storing more

specific data. This means that a book entity has a few properties, each defined by its

own tags. There can be multiple entities within the same file, as the example shows.

Likewise, if we convert a class diagram to an XML file, we will have a very big file

including around thousand lines of code. It was difficult to handle that file. For that

purpose, we developed our own XML Parser using the DOM (Document Object

Model) parser [38], which is included in the javax.xml package. The W3C Document

Object Model (DOM) is a platform and language-neutral interface that allows

programs and scripts to dynamically access and update the content, structure, and style

of a document [38], The XML DOM defines a

manipulating XML documents.

standard way for accessing and

It presents an XML document as a tree-structure,

76

Figure 4.1 shows

Defines the API to
an example. It has Uv° main classes such as. DocumentBuHder:

n D0N1 Docurilc'u instances (Tom an XML document
DocumwntBuilderFactorv: Defines a factory API that enables the applications to obtain

a panset that ptoduces the DOM object bees bon, ,b, XML documents. As wel, as we

used the document interface, which ,„e HTML „ „

Conceptually. „ ,s the mo, of the document a„d p„rfdes dte primary access to the

document s data. So by using these API. we developed an XML exmwor to extract
information from the XML file.

Root element:
<bookstore>

Parent' ‘
Child

Attribute:
"lang"

Element:
<book>

Attribute:
* category"

Element:
<title>

Element:
<author>

Element:
<year>

Element:
<price>

't &
Siblings

Text:
2005

Text:
30.00

Text:
Giada De
Laurentiis

Text:
Everyday Italian

Figure 4.1: Example of XML Parser [20].

The code snippet below shows how the task of reading and accessing data from an

XML file. Step-by-step explanation follows.

DocumentBuilderFactory dbFactory = DocumentBuilderFactorv.new/nsfonceO;
DocumentBuilder dBuilder = dbFactory.newDocumentBuilder(),
Document doc = dBuilder.parse(XmlFile),
doc setDocumentElement().normalized,

‘ etDocumentElementO.getAttributeC'name");
FileWriter("ProjectName:"+doc.getDocumentElement(lgetAttnbute(name)),
if (eElement.getAttributeC'modelType).equals! Class |)

doc.g

77

eElement.getAttributef'name");

First of all, the dbFactory object is created of DocumentBuilderFactory class as

described above. And then the dBuilder and doc objects of the DocumentBuilder and

Document classes are created using the dbFactory object. Then we parse the XML file

into the doc object to represent the XML file into a tree format. Finally, we check the

modelType, if it is equal to the Class, that is the name of the class, if it is equal to

Operation, then they are names of methods, as well as if the modelType is Attribute

they are attributes. In this way, we access all the identifiers from the class diagram by

parsing the class diagram into the XML parser.

4.2 Integration of GitHub API

GitHub API integration is our second big module in our developed framework. We

spent a considerable time to develop this module using the GitHub API because this

API is a new thing in GIT version control system. When we developed this module we

faced a lot of problems, we discussed that problem deeply in section 2.2.1. We

integrated the GitHub API with help of the support team of the GitHub, the support

team will be online 24 hours to serve to the developers and the researchers. Once we

ask a help via mailing list, they will respond and give a solution within few minutes.

We published a research paper on this section you can refer the paper [39]. As we

discussed earlier, this module has two sub-module, called Java project names dumber

and Java class names dumber. Following two section will describe that two

submodule’s implementation deeply.

4.2.1 Implementation of Java project names dumber

When we use the GitHub API to access the repository names and the file names, the

API will give that details in JSON format, so we need to use a JSON parser to extract
78

the information from the JSON

text-based data interchange format

be either as key-value pai
following:

object. The JavaScript Object Notation (JSON) is a

an alternative the XML. JSON Object structure

•ns or ordered list of values. An example of,SON d„, is
can

{"Employees":!

"Name":" ABC",
"Designation":" Manager",
"Pay":"Rs. 60000/-",
"PhoneNumbers":[{
"LandLine" : "ll-2xxxx99",
"Mobile" : "llxxxxxxll"
}]
},
{
"Name":"XYZ",
"Designation":"Sr. Manager",
"Pay":"Rs. 70000/-",
"PhoneNumbers":[{
"LandLine" : "ll-2xxxx32",
"Mobile" : "66xxxxxx66"
}]
}
]}
In the JSON, [] represents Array. {} represents the Object. If we want to access the

name list of employees, we use “Name” as the key to access its values. Likewise, in

the GitHub respond for our request, all projects details are organized in the JSON

format using the key-value pairs. As we discussed earlier, we want to have all the

repository names (In our research we focused only on the Java repository names) in

local machine. And then we access all Java the file names belongs to that projects,
access all

our
which will be explained in next section. Following code snippet is used to

the Java repository names in the GitHub. Step-by-step explanation follows.

String jsonString - callURL(URL),
JSONObject outerObject = inew JSONObject(jsonString);

79

JSONArrayjsonA
for (inti - fT3y ~

;''>• *» - US0NA"a*l"i.ems-);
“"Object objecting ' S“: i+t)

obl«llnArra,.eei|-name!‘|!0nArraV8etJSONObiect(i);

public String ||URL|st,in

gB^b—
'nPutSt^^T
URL url =

null;
n = null;

new URL(myl)RL);
urIConn =
if(urico„„u,r=™:ronnec,ion0;

if {urIConn |. „ul!C8,“n S'!,,<eadTimC“,l“ *

null) {
1000);

urIConn.getlnputStream() !=

in = new
I nputStream Reader) urIConn.getlnPutStream()
Charset.de/ou/fC/jorsef());
BufferedReader bufferedReader
BufferedReader(in);

if (bufferedReader != null) {
int cp;
while ((cp = buffered Reader.read()) 1= -1) {

sb.appendf(char) cp);

= new

bufferedReader.closef);
}
}

in.close));
return sb.toStringf);
}

In the first line, we call the callURL(String myURL) method to parse an URL, an example

of an URL is https://api.github.com/search/repositories?q=language:java+ created:.

We will add few other details with this URL such that, the date after “created:” word

in the URL, a particular time, the page number, and the number of objects per page.

We parse the improved URL into the method as a parameter, and then the

URLConnection and URL objects are created using the URL to make a truest. Consider

80

https://api.github.com/search/repositories?q=language:java+

the line if (urIConn != null), it the API allow only 10 requests per minutes, so

after the ten request connection will be null, that is what we stop the request for one

minute using urlConn.setReadTimeout(60 * 1000); and after the one minute again

make another 10 request. Likewise,

means

we

make the request and take rest to get all
repository names in the JSON data format, and then we will use a JSON parser to

access that data.

we

A JSONObject is an unordered collection of name/value pairs. Its external form is a

string wrapped in curly braces with colons between the names, the values, and the

commas between the values and the names. An internal form is an object having to get

() and opt () methods for accessing the values by the name and put () methods for

adding or replacing the values by the name [40]. The values can be any of the following

types: Boolean, JSONArray, JSONObject, Number, String, or the JSONObject.NULL

object. A JSONObject constructor can be used to convert an external form of JSON

text into an internal form whose values can be retrieved with the get () and opt ()

methods, to convert the values into a JSON text using the put () and toString ()

methods. A get () method returns a value if one can be found, and throws an exception

if one cannot be found. And opt () method returns a default value instead of throwing

an exception, and so is useful for obtaining the optional values [40].

A JSONArray is an ordered sequence of values. Its external text form is a string wrapped

in square brackets with commas separating the values. The internal form is an object

having get () and opt () methods for accessing the values by index, and opt () methods

for adding or replacing values [41]. The values can be the following types: Boolean,

JSONArray, JSONObject, Number, String, or the JSONObject.NULL object. The

constructor can convert a JSON text into a Java object. The toString method do the

operation vice versa. A get () method returns a value if one can be found, and throws

exception if one cannot be found. A opt () method returns a default value instead of

throwing an exception, and so is useful for obtaining optional values [41],
an

81

Finally, through an iteration (loop), all the dat

names, the created dates and few

Likewise, all the project name will be dumbed using the above code

discussed in the section 2.2.1, getting all the project names at

because of the restriction of their API that i
And then we used a

a such as the project names, the author’s
other details will be accessed from the JSON file.

snippet. As we

once was very difficult
is we could not access more than 1000 result.

neat trick to fetch more than 1000 results. We split up our search

were created. For example, we first

week of October 2013, then second

into segments, by the date when the repositories

search for repositories that were created in the first

week, then September, and so on. Because we

narrow period, we will probably get less than 1000 results, and would therefore be able

to get all of them. In case we notice that more than 1000 results

would be restricting the search to

are returned for a
period, we had to narrow the period even more, so that we could collect all results.

4.2.1 Implementation of Java class names dumber

We had made a local repository containing all the Java project names in the GitHub

forge using above discussed module (Java repository dumber). As we discussed

earlier, each project could have hundreds of .java files, few project may have more

than 100 .java files. The purpose of this module is read all project names one by one,

and access all .java file names belongs to the particular project, and then make a local

repository to hold all .java file names in the GitHub forge. When we take a keyword
will check with the java file name, if it matches andfrom the class diagram, first we

then we retrieve the project name from the project names repository, finally

download the project from the GitHub forge,

explanation is following the code snippet.

we

Consider the following code snippet and

=repo:";"https://api.github.com/search/Code7q
String strl =
String str2 = projectName;

"+extension:java";String str3 =
try {

82

https://api.github.com/search/Code7q

String jsonStri ng = callURL(stri+str2+strtv
numCount++; st 3'-
'f((numCount % 10) == o){

Thread.s/eep(60000); 1
}

First three lines are describing three stri

names from the project

to make a full URL.

ng to make a URL, string str2 hold the project

connect these three string together
mto the callURLO, (String jsonString =

names repository, and

Finally we parse the URL i
we

callURL(strl+str2+str3);) method we discussed i

the count using numCount++; to check the

If it reaches 10, we used a Java thread to tak

request. In this way the callURL() method will

in the section 4.2.1. In the next line, we
increase

number of requests is reached 10.

e rest for one minute and again make the

return a jsonString, we parse this string

mto the JSONObject (see the code snippet in section 4.2.1) and check the number of

JSON objects to do pagination, following code will explain this problem.

int id = lnteger.parse/nf(outerObjectl.get("total_count").toString());
if(id>100){
int pagenum = id/100;
for (int i = 1; i <= pagenum+1; i++)

jsonString=callURL("https://api.github.com/search/Code?q=repo:,,+line+"+exte
nsion:java&page="+i+"&per_page=100");

As we discussed earlier, only 100 objects will be displayed in a page, if the number of

objects is more than 100, we need to make another page to access rest of the objects.

That is what we are getting the id from the JSONObject and in the next line,
divide the total number of objects by 100

a for-loop to make

we check

number of objects, if it is more than 100, we
to get the number of pages to be made. Next line of code describes

the number of pages depend on the divided value. Finally, we parse His value into He

URL with starting “i” value from one and we increase He value by one to reach all

pages. Again we parse this URL into the callURLO method, ge, HeisouS.rmg, an agam

parse His s,H„g into He ISOUObjec, to access ,11 Java He name, if He id vaiue ts no,

more than 100 we parse the JsonString into He JSONOb,ec, In this module and the

83

https://api.github.com/search/Code?q=repo:,,+line+%22+exte

above module, we followedexplained in the previous J,i„7 7T d<> ^ JS°NObieC' "

s section, and .f you want detaiis about that code refer the
previous seel,on. this way, we raade . reposiro^ ,0 hold all the java ffle _ jn
the GitHub forge. When you use the Gi.Hub API. y„„ wi„ get so ma„y prob|emSi

that situation you can eontaet the support team of the GitHub, they will help to solve

all the problem regarding the API usage.

4.3 Implementation of Crawler and Decompressor

We developed three types of the crawler to fetch the related projects to the class

diagram depend on the information retrieved from the class diagram. We used the

JSOUP Java API to implement this module. Our developed crawlers take the

information (class name, method names, and attribute names) one by one as a keyword,

take the forges URL as seed URL (www.Sourceforge.com, www.googleCode.com,

and www.github.com) and it will fetch related projects through a few iteration. Refer

the section 2.2.3 for further information about the crawler. These three types of

crawlers are different because the related three types of forges and its websites

different. But we used same JSOUP library to develop these types of crawlers.

Consider the following code and explanation.

are

Jsoup.connect("https://Code.google.com/archive/p/oqs/");
Elements linksl = doc.select("p");
for (Element el: linksl)

System.out.println(el);

Document doc =

Java JSOUP library follows tbe Document Object Model (DOM) to fetch data so w

hold all the data of the website. And then we parse the seed UR

Elements object gets the data from doc object by giving

will get all the data using

ill illustrate the GoogleCode Crawler.

create doc object to

into the connect () method. The an
the select () method. Finally we

the HTML tag into

iteration. Following code snippy

84

http://www.Sourceforge.com
http://www.googleCode.com
http://www.github.com
https://Code.google.com/archive/p/oqs/

Document doc =
jsoup.connect("https://Code.
&start="+i);

We parse the GoogleCode

google.com/h°nin|/search?q,.+termt.t|abel%3AI
ava

search URL with the te
the class diagram. We parse all the term rm stnng which iis extracted from

one by one.
roject names in a table format. So we

related project name.

extracted from the class diagram
code forge arrange all the proj

analyze the table value in the website to get the

Normally the Google

for (Element tr: doc.select("#serp table tbody tr")) {
Element el = tr.child(0).child(0);
String projectName = el.attr("href").split("/")[29];
String SourceCodeUrl = ''https://Code.google.eom/p/" +

projectName + "/Source/browse/";
links.add(new String(SourceCodeUrl));

Then, we get all the element of the tables on the website, and then we get the child

node of the tr element of the table, that will be a link. Finally we get the link using the

attrf'href") methods, and then split the link where the “/” symbol in the link to get the

project names from the link and save the project name as link in a set using the 5th line

of the code in the above-mentioned code snippet. Often the project name will be on

the link, otherwise it will route another link to reach the project file. So we need to

analyze the link using the same code again.

for(String link: zipLinks){
Document doc = }soup.connect(\\nk),

doc.select("a[href]");Elements linksOnPage -
for (Element tr: linksOnPage) {

if(tr.absllrl("href').endsWith(
links.add(tr.absilrl("href"));

if(tr.absUrl("href").contains("downloads")){
Document docl =Jsoup.connect(tr.absUrl("href"));
Elements UnksOnPagel = docl.select("a[href]");
for(Element trl: HnksOnPagel){

if(trl.absUrl("href").endsWith(

".zip"))

".zip")){

85

https://Code
https://Code.google.eom/p/

links. add(trl.absUrl("href"));
}

}

We take each link one by one from the set
created using above link, and then

parse the link into crawler again to check the link route to the other link

the other link we cheek the link whether it includes the “.zip” string using the

tr.absUH("href").endsWith(".zip") code snippet. If it contains the .zip word

we we

, if it routes to

we add the
link to another set which is the project file location. Otherwise, we check whether the

link has "download” word, it means the link has project file location link. Agai

check the link using same code and we add all link which has “.zip” string to the set.

Finally, we download the zipped project file using HTTP request and HTTPGet

n we

method. Likewise, other two types of crawler will work, but it is implemented little bit

different manner. But the basic idea is same.

As we discussed earlier, all the downloaded projects will be in zipped format. We

cannot do any operation as the project file is in zipped format. Because our approach

is based on source code level, so we need to extract these project automatically to get

developed a De-compressor module to extract allall .java file. For this purpose, we

downloaded project. But all downloaded projects will be in different zipping format

.tar.bz2, .tar.bzip2, .tbz2, .tar.lzma, .tlzma, and .rar, .tar. Wesuch as .zip, .tar.gz, .tgz,

developed three classes to decompress all these types of file format such that

and rarDecompressor.java. The .zip

the .rar files will be
tarDecompressor.java, zipDecompressor.java,

files will be decompressed by zipDecompressor.java,
decompressed by r,rDecompress„r.j.v«, and res. of .11 other types of file forma, will

be decompressed using tarDecompressor.java.

86

4.4 Abstract Syntax Tree and Identifier Splitter

Our proposed approach based

project using previous modules. All

files. Our next task

attributes names) and the

on source code identifiers, we extract all compressed

extracted projects will have a huge amount of java

the identifiers (class name, method names, and

comments from these .java files. Because our developed

approach based on analyzing the identifiers and check the relevance of the downloaded

was access all

project to the class diagram. So only way to access the identifiers from the source code

is to represent all the Java code into Abstract Syntax Tree.

4.4.1 Implementation of Abstract Syntax Tree

All source code can be represented in a tree format is called Abstract Syntax Tree. If

you want detail about the AST you can refer the section 3.4. In this research, we used

Eclipse JDT Java API to represent all Java source code into AST. The AST will

represent the class name in the root node of the tree, the methods will be in the child

nodes of the class name node, and the attributes and the method s parameters will be

child nodes of the methods node. Following code snippet explain the AST

representation and extract the identifiers.
in the

= ASTParser.newPorser(AST JLS3);ASTParser parser
parser.setSource(str .toCharArrayO),

setKind(ASTParser./(_COMP//AT/OA/_L/A//T);
= (CompilationUnit) parser.createAST(null);parser

final CompilationUnit cu
CU'aCCe^rbX«|VariableDec,.ra.io„Fragmen,n„de)l

SimpleName name = node.getNameO,
dd(name.getldentifier().toStrmg()),

false; // do not continue
names.a
return

nublic boolean visit(MethodDeclaration node) {
P SimpleName namel = node.getNam),

l.getldentifier().toString()+ ()),
names. add(name

87

return super.visit(node);

});
return names;
}

First three line of the code snippet explains, creating an ASTParser object, parsing the

.java file path and making an Abstract Syntax Tree. If we represent the source code in

a tree format, we can visit all the node of the tree using the ASTVisitor and

the identifiers. Using the visit () Boolean type method we can access all the identifiers.

If we want to retrieve all the attributes, we parse the VariableDeclarationFragment type

node as a parameter to the visit () method, and then using the getldentifier() method we

can access the attributes. Likewise, if we want to access methods names, we parse

Method Declaration type node as a parameter to the visit () method and using the same

getldentifier() method we can access the method names in the source code.

access all

We access the leading comments of a method in the source code to extract the action

verb from the comments. The coding of comments extraction from source code is

somewhat different from the methods and attributes extraction. Consider the following

code snippet and following explanation.

public CommentVisitor(CompilationUnit cu, String Source) {
superQ;
this.cu = cu;
this.Source = Source;

public boolean visit(LineComment node) {
node.getStartPosition();int start =

int end = start + node.getLength();
String comment = Source.substringfstart end)
FNeWriter(commen,.,eplaceAII("\\s+ , ">.replaceAll(/ ,)),

return true;

88

int end - start + node.getLength();
Stnng comment = Source.substring(start, end);
FileWriter(comment.replaceAII("\\s+"
return true;}

As we discussed earlier, if we retrieve the

in AST, we

it ii).replaceAII(7*",""));

comments from the source code represented
create a CommentVisitor object and using the same visit () Boolean method,

we retrieve the comments. Inside the method, we create two int type variables such as

comments. There arestart and end to get the starting and the ending position of the

two types of comments, one is line comments which will start from a double forward
slash. And another type is block comments which will start from a single slash and

following * symbol. We used the Stanford Part of Speech tagger to identify whether
the extracted word is an action verb or not.

4.4.2 Implementation of Identifier Splitter

The previous module will be used to extract all the identifiers (Class names, method

names, and attribute names) from the Java source code. As we discussed in the section

3.5 all the developers are lazy, so they are not writing the full meaningful words.

Instead of to use the full meaningful word, they are shrinking the words and then they
abbreviated words together to create an identifier. Ifare connecting these two or more

the programmers are ready to follow any naming convention when they producing

composite identifier, normally they will follow Camel-C.se naming convention

(,-mvFfe dteRotv. and sndMssg) o, they will use few explicit separotor (Aec,_—.
fndSvahte, and gaSntt)- If they follow these types of naming convention to produce

identifiers to get the full meaningful words. This
an identifiers, we need to split these

is what we developed this module using the following code snippet.

String str2="";
for (String w
{if (identifiers==w){

str2=w;

::identifiers.splitn?<!('l[A-Zl))(f=[«])l(?<t')W«ll>-tin)

89

}else
splitedNames.add(w);

/String str[] = {" »n
for (String s:str){

if (str2.contains(s)){
String st[]=StringUtils.sp//t(str2
for (String si: st){
splitedNames.add(sl);
}}else
unSplitedNames.add(str2);

4"/"5,,/"6"/n7,,/

s,0);

}}
Most of the developers

would like to follow
following the Camel-Case naming convention (if they

any naming convention) and a few developers

are

are using an
explicit separator to make the composite identifiers. First, we check whether the

identifiers are following the Camel-Case naming convention using the second line of

code of the above code snippet, if it follows the Camel-Case naming convention

split the identifiers where the capital letter start, and store the term into a set using the
we

splitedNames.add(w); code, else the word will be returned as it is. The second type of

naming convention is using the explicit separator, the 7lh line of the above code snippet

is used to split the identifier using the explicit separator where the separator is started.

Then the split term will be added to the set using the splitedNames.add(sl); code.
set using theOtherwise, the identifiers will be added to another new

unSplitedNames.add(str2); code.

4.5 Implementation of Spell Checker and Word Finder

not followed any

discussed earlier the
and composite identifiers which are

We will have string terms
after using the above module. As we

One is Good identifiers (can be split using
our splitter). Our

naming convention
identifiers can be divided into two types.

—- ~is - ,d:":r I**—our
fromsplitter will give the string term

90

with a dictionary to identify the

purpose, we used Stanford Spell-Checker

Following two section will describe the implementation of two sub-module to identify

the meaningful dictionary word from Good identifiers

meaningful dictionary word. For spell checking

as a pillar to develop our own Spell-Checker.

and Bad identifiers.

4.5.1 Implementation of Spell Checker for Good Identifiers

As we discussed earlier, a Good identifier is a one which follows any naming

convention such as Camel-Case or the explicit separator. Our splitter will split these

types of identifiers into meaningful dictionary words and string tokens. If it is a

meaningful dictionary word, that will be stored into the spIChecked, otherwise, we use

our spell checker module to get the meaningful dictionary word which is related to the

string tokens. Consider the following code snippet and the following step by step

explanation.

CamelSplitter cs = new CamelSplitterf);
cs.idfyldentifiers(clssPath);
SplitName = cs. splitedNames;
UnSplit = cs.unSplitedNames;
Set<String> spIChecked = new HashSet<>();

for (String terml: SplitName){
String term2 = terml.replaceAII("[0-

9],,/"").replaceAII(,,[A\\w\\s],V,").replaceAII(,,_"/ ,,u).replaceAll(,,(),,/

if(dictionary.contains(term2)){
splChecked.add(term2);

}else
{KGramSpellingCorrector sp = new KGramSpellingCorrectorf);
List<String> toplO = sp.corrections(term2.toLowerCase());

for(String str: toplO){
spIChecked. add(str);

W

91

In the first line, we create a splitter obi

the cs.idfyldentifiers(clssPath);
ject and we get two types of the identifi

and then
ers using

SplitName and UnSplit. AH string token and lealr ^ 1into two set
gful English dictionary words from

good identifiers will be in the SplitName
set. Our next task is identifying the

meaningful dictionary word from the stri

process using the if(dictionary.contains(term2)) code. If it is

spell checker. Our developed spell checker using the N-gr

meaningful English dictionary word. The spell checker will

ng token and send that word iinto comparing

a string token we use our

technique to identify the

- give 10 most relevant
string token. The 12th and the 13th line of the code are used to get the

list. Finally, we store these word into the splChecked set and send it to the comparing

process to check the relevance with the information from the class diagr

am

words to a
word

am.

4.5.2 Spell Checker and Word Finder for Bad Identifiers

The previous module identifies the good identifiers and identify the meaningful

English dictionary words from these identifiers. As well as it will make a set which

holds all the bad identifiers which cannot be split by our developed splitter. However,
need to identify the meaningful English dictionary words from the bad identifiers

the abbreviated form without
we
as these identifiers include more than two words in
following the naming convention. We developed an algorithm to do above-mentioned
process. We used N-gram technique to implement the algon.hm, as we mennoned

earlier we used Dynamte time warping is a speech recognition teohmqne .0 tdentriy
time to identify thethe bad identifiers, but it took more

the meaningful words from can refer theword list for particular string token. You
of the developed algorithm. Following codewords and it suggested wrong

frill explanation
cess of bad identifiers analyzing.

section 3.6.2 to get a

snippet will explain the pro

for(String word: UnSplit){

92

word = word
9],,/,,,).replaceAll("[A\XwNNs]"

forfint i=2; i<word.l

LBKSWngMopl-so °f SP ' "SW KGramSPeHineCorrectorO;
for(string^stn°topll)P COrreCt,OnS^C*1Unk',oLowerCase0);

splChecked.add(str);

replaceAII("[o-
"<"")-replaceAII("_"(

ength(); i++){
"")-replaceAII("()"; mi);

}}}}

We have stored all the bad identifiers into a

by one using a loop and remove all the following from the identifiers, such as numbers,

space, () (from method signature) and _ symbol. Then we split the identifiers into the

chunk using the getChunks() method by parsing the identifiers and an integer (i) value

which will start from 2 because one letter words

set UnSplit. We get all the identifiers one

are very rare in the computer
programming field. This process will split the word into two letters chunk and check

the chunk in the English dictionary using our developed spell checker. If the chunk is

the meaningful English dictionary word, our spell checker will give 10 top related

word list, and then we remove the chunk and continue the process. As well as we store

the word list into spIChecked and send the word set into the comparing process. If all

the chunks are not an English dictionary word we will increase the (i) value by one and

repeat the above-mentioned process. We will repeat the same process until identifying

the related words to the identifiers. After identifying all the meaningful English
start the comparison process with thedictionary word from the bad identifiers, we

following module.

4.6 Implementation of Matching and Rating

the identified words from thefinal developed module, to compareThis is our
identifiers w„h the infection fiom the el,ss diagram - *• “ b> ~

are with the information of the class diagram. If
unt of marks to the downloaded

from the identified word list and comp
the word matches with the infonnation,

93
we give an amo

class and repeat the Pr°cess to all the

synonyms word to a particular words. We used the W°rdNet [13] to get allWor<i. For an

contains the word “

are synonyms in

t0 get all the

wiU explain the i

example, if theclass diagram’s information wora is “delete”, but ihe
renM™". both w0rds

the English
computer context (but both

implemented the WordNet [13]

process. Following code snippet

are same in the
grammar). That is what wg

synonyms and repeat the
implementation of this

matching
module.

for (String elmntXMLCIs:XMLCIsDtlsLst)f
for(StrlngelmntSPL:splChecked){

ring[] str_class = elmntXMLCIs splitt" ")•
f°r if M„g idntff Jn_class: strjtlassH

(elmntSPL.equalslgnoreCase(idntfr
marks+= 100/str_class.length-

} else {
WordNet wn =

Jn__class)) {

new WordNetf);
Set<String> synonyms =
for (String syn : synonyms) {

if (syn.equalslgnoreCase(idntfrJn_class)) {
marks += 100/ str_class.length;

.wordNetSynonyms(elmntSPL);wn

(

}
}}}}}
System.out.printlnf'Marks of the class is:"+ marks);
if (marks >= 50) {
System.out.printlnf'class path");

We used two loops to get the words and the class diagram’s information one by one

from the two set XMLCIsDtlsLst and spIChecked. And then, we check the both retrieved

words by ignoring case. If these two words are matched, we divide the 100% by the

number of identifiers in the class diagram and add the divided percentage value with
marks += 100/str_class.length; code

not matched, we get all the synonyms from the WordNet
WordNet (); and Set<String> synonyms =

initial marks (initial marks is zero) using the

statement. If both words are

[13] using the WordNet wn = new
wordNetSynonyms(elmntSPL); «»,. To implement the Word* [13], wo

used the JAWS Java API and its Data set. And then, again repeal -he matching process
wn.

94

with all the retrieved synonyms from the WordNet [13]. Finally, we check the total

marks of the class. If the total marks are more than 50% we suggest the class to the

developers.

95

Chapter 5

Evaluation

We have done the experimental evaluation to

framework. Our research d
show the effectiveness of our developed

omain is source code searching and source code analyz

Source code analyzing done by analyzing the identifiers of the source

classes, interfaces, methods

ing.

code (Names of

parameters or
sequence of characters (a string) consisting of one or

many tokens). We asked few question ourself to evaluate our developed System

designed our evaluation to answer the following five research questions,

or functions, variables and fonnal
arguments can be viewed as a

. We

1) How well does our System download relevant projects?

2) How well does our System identify the real words from good identifiers?

3) How well does our System identify the real words from bad identifiers?

How accurate is the automatic extraction of the action verb from a comment?4)

The subjects in our evaluation were identifiers from 5 open Source Java programs

Itiple domains and different developers from the GitHub repositories (for

focused only on the Git forge). In total, the projects were comprised
across mu

testing purpose we
of 3985 lines of code from 34 Source files. In this dataset, there were 135 methods,

with methods documented by the leading comments, and there were 309 attributes.
that the 5 targeted projects should be in the downloaded

iects wanted to be selected as the related projects to
of marks by all the class

Our goal of the evaluation

project group. As well as these projec

the class diagram through getting

was

than 50 percentagemore

belongs to the projects.

Our evaluation had several tasks and we

mentioned projects and its elements

developed module with above-

h of the four phases, (1) Downloading
checked our

. We ran eac

96

the relevant project depends on the info

words from the identifiers which

words from the identifiers which

Extracting the action verbs from the

rmation from the class di
following naming

are not following the

agram, 2) Identify the

convention, 3) identify the
are

naming convention, 4)
comments) on the entire set of 5 Java projects.

Each phase’s result was different, we could not show in one common result, that is

separately. Now we will discuss thewhat we explain the results of the four phase

result of each of the four phases.

This chapter provides the details of the approach took to evaluate our developed
framework. We explain the performance by asking the questions that

we

we denoted
previously, in section 5.1, we describe the performance of our developed crawlers (it

means Downloading the relevant project depend on the information from the class

diagram). Section 5.2 describes the performance of our Spell-Checker and Word-

Finder for the Good identifiers. In section 5.3, we describe the performance of our

Spell-Checker and Word-Finder for the Bad identifiers. Section 5.4 describes the

performance of extracting the action verbs from the leading comments. Finally, section

3.5 explains the overall performance of our developed framework.

5.1 Performance of crawlers

module of our developed framework, we targeted

selected only the GitHub
To check the performance of all the

GitHub forge. For the evaluation,
endendo-vraptor, BST, BusMan, listview2, and

all targeted 5 projects and

we
5 projects from the

crawler and the GitHub projects (apr we
drew 5 class diagrams for

PrintWB). First of all, we

saved the diagrams

ter the class diagrams into

method
. And then, we en

the elements (class
in the XML file format

module to extract
name,

the extracted

The crawler

developed crawler

developed XMLExtractor
names) of the

Finally, we parseour class diagrams.
GitHub crawler.and attributenames,

information as

downloaded 734 projects

developed
ted 5 projects. Our

to our

including our targe
the keywords

97

downloaded all our targeted projects, so the ac

test case was 100%. Through this evaluation
question "How „ell ,he, mr ^

earlier.

CUraCy °f °ur developed crawle
We got the

r for this
answer for our first research

relevant projects? " we mentioned

Table 5.1: Result of downloading relevant projects

Targeted Projects
names

Keywords Downloaded Projects
name
-ABR_controller
-accountant-app
-aprendendo-vraptor
-vraptor multimodule

The Project is
thereVrapper Controller

CORS
Option
■Request

iYes

PrintWB
-Devicelist
-Create
-pairedlist
-Intent

-IntentFilter
-IcePointG
-PrintWB

Yes

-RiderMessagesT est
- MimeType
- ManifestActivity
-node
-BST

-SSCPL
-BusMan
-droidel

BusMan Yes

Yes-bstrlin
-AlgoDS

BST

-BST
Yes-assembler-simulator

-Code-dot-org
-listview2____

-computer
-mainActivity

listview2

98

Accuracy of All Modules

300
275

23025023u 225
Q)
O' 200
£ 175

O 150

t 125
■? 100
D 75
2 50

201

142

87
j■'1 74

mj r ■

:
25 {ii

:
;!

Vraptor PrintWB BusMan BST Iistview2

Project Names

Figure 5.1: Result of downloading relevant projects

In Table 5.1 and Figure 5.1, we have shown the result of the crawler module in our

developed framework for the evaluation test. If you take a look in Figure 5.1, the

listview2 projects have only two .java file and few identifiers, but our crawler

downloaded 201 (highest amount of projects) projects. Because the keywords given to

the crawler is “computer” and “MainActivity”, these words are commonly used words

in the IT field, so the keywords occur in several projects. That is what, our developed

crawler downloaded the highest amount of projects for the keywords. The crawlers

downloaded 230 projects for the “PrintWB” project because it includes 15 .java file,

so it includes a big number of identifiers. The .java files are more, so the identifiers

more, that is what the keywords are more. So the crawler downloaded that much

of projects. However, the accuracy of our crawler is 100% because it downloaded the

targeted 5 projects.

are

99

5.2 Performance of Spell Checker and word finder

As we discussed in the previous section, our developed crawler downloaded 734

projects. All these Downloaded projects were in zipped

extracted all the projects using

compiessing these projects, we had a lot of .java files in each project. First we analyzed

the targeted 5 projects. We parsed all the Java Source files into AST parser to

the identifiers and the comments separately. Finally, we extracted all the identifiers

from the .java files. We categorized all the extracted identifiers into two categories

depending on their nature, such that, the good identifiers which are following the

naming convention, and the bad identifiers which are not following the naming

convention. First, we consider the Good identifiers, following section will explain the

accuracy of our Spell-checker for the good identifiers.

or compressed format, and we

developed de-compressor component. After de-our

access

5.2.1 Performance of Spell Checker for Good Identifiers

Usage of Abstract Syntax Tree gave a big amount of identifiers. As we mentioned

earlier, we categorized all these identifiers into two types, in this module we check the

good identifiers which are following the naming convention. Altogether we extracted

478 good and bad identifiers. In which, 472 good identifiers and 06 bad identifiers, it

shows that most of the developers are following the naming convention. And then

developed splitter to split the good identifiers where the naming convention

abbreviating the words to produce the identifiers

send the identified

we

used our

occurs. Sometimes developers are
and sometimes not. If they have not abbreviated the word

But if they have abbreviated the words to produce the

developed Spell-Checker to identify the meaningful

we can

words into matching process

identifiers we need to use our

English dictionary words.

100

Table 5.2: Sample result of Identifiers

Identifiers Connected
Word sample

Single word
sample

Sample
Good
Identifiers

Sample Bad
Identifiers

telefone mModeLabel Allowed

writeTag() Rider

isAtivoQ Size

nderText hsAtivo

addToView() kiewLocale kodoAtivos

allowed btnSend kodosQ

mModeLabel timeregexp

mywebview

HtmlcontentQ

BUILD TYPE flistViewbo

101

m N«mb?r of Co
“I'cted Words

* Numb** ofSmgl- words

K Numbcr of Good Identifiers
■ Number of Bad Identifiers

Figure 5.2: Result of Connected and Single Words in Identifiers

In Table 5.2, we have shown a sample of the composite identifiers and the good

identifiers. In Figure 5.2, in the first PI chart, the number of composite identifiers are

102

370 and the number of single word identifiers

abbreviating the

two string term to produce

is 108, so most of the developers are
meaningful words into string term and they

connect two or more than
an identifiers. Few developers are using a single word to

e second PI chart, the total Good identifiers are 472 and

are 06. It shows that most of the developers are following the

naming convention and very less developers are not following the naming convention.

Through this evaluation, we answered to the second research question "How well does

produce an identifiers. In th

the bad identifiers

* System identify the real words from good identifiers? ”oui we mentioned earlier.

5.2.2 Performance of Spell Checker for Good Identifiers

We mentioned earlier that the Bad identifiers are not following any naming

convention; it means Camel-Case or the explicit separator. For an example,

“addNumber” is a good identifier while “adnum” is a bad identifier, through the human

intuition, we may identify the meaningful words from the bad identifiers but it is very

difficult to the machine (computer) to identify the meaningful words. We have

developed an algorithm in this research to overcome the problem. Therefore, we used

the developed algorithm to identify the meaningful words from the bad identifiers. In

the same Table 5.2, we have shown a sample of Bad identifiers.

Figure 5.2 shows that the percentage of all 6 bad identifiers out of all identifiers. It

though few developers do not follow any naming convention in

developed software or currently developing software but most of the developers

following any naming convention. Finally,

shows that even
are

parsed all the bad identifiers into ourwe
meaningful English dictionary words. Our

to identify the meaningful
developed algorithm to identify the

the N-gram technique, and the WordNetalgorithm uses
pie of the result of identifying meaningful

English words. Table 5.3 shows that

words from the good and

a sam
bad identifiers. Through this evaluation, we

English

103

answered to the third

words from bad identifiers? ”
research question “How well does

we mentioned earlier.
System identify the realour

5.3 Performance of Extraction of action verb from comments

If we need to understand a class or method, we can read the each line of codes and
realize the logic of the methods or task of the methods. Otherwise, we can read the

leading comments of the methods or the class to understand the task. Comments will

explain the whole task of a class or a method. Most of the methods are doing

to complete a task, so it includes an action verb. Add, remove, call, connect, delete,

send, and show are the example of the action verbs. Likewise, all the leading comments

of methods are having an action verbs in it (sometimes, it will be a synonyms of the

an action

action verbs of the methods), so our assumption is that we can get the relevant words

to the task of the methods through analyzing the comments that is the action verbs.

The action verbs will describe the task of methods, so we can use these action verbs to

the comparing and rating process.

So we extracted all the leading comments using the AST parser, then we extracted all

the action verb from the comments using the Stanford Part of Speech Tagger. And then

the identifiers with the information of the class diagram.

extracted all the leading

extracted 126 action

as the identifiers to

analyzed the action verbs as

We accessed 34 .java files from all the targeted 5 projects, we

comments of the methods from these .java files, and finally,

: extracted comments. We parse these action verbs

with the information of the class diagram. Most probably the action verbs

of the action verbs used in the method signature

we

words from the

compare

from the comments were synonyms

or directly to the methods name.

104

A

• G

Table 5.3: Sample result ofsplittin
g and identifying the real

words

Identifiers Split terms

Add, To, view
non split terms Our algorithmaddToViewQ

rider
rider

writeTag()

BUILDTYPE

Write, Tag

BULID, TYPE

Mywebview

phraseLocale
Mywebview my, we, web, via, view

Phrase, Locale

lstview
lstview last, list, lost, stove, via

recordNewRider ReCode, New, Rider

Table 5.4: Sample result of rating the project

Projects Targeted Projects Average marks of all
.java files of the
projects (threshold
marks 50%)

Status Of selection

100% Selectedaprendendo-vraptor Yes

Rejected47%NoDrivingController

Rejected23%Noeboard -app

Selected100%YesBusMan

Selected100%YesPrintWB
Rejected24%Noj ersey-header-cache

105

Chapter 6

Conclusions

6.1 Conclusion

The whole work of this research does

Software tool, but part of our developed framework

drawbacks but not full work that

not exist as a related work or the relevant

are available with so many
have done. First of all this thesis give a brief

introduction of the current situation in the software development company as well as

we

the common problems that the developers are facing when they launch the

implementation of a software architecture. Then it presents the analyzing of the all

related work with our work, in that section we described the GitHub API integration

to develop our framework, which is a new thing providing by the GitHub. As well as

we discussed the crawlers, the JSOUP java API, the WordNet, the Stanford Spell

Checker, and the Stanford Part of Speech Tagger.

Next, we described the design of our framework, in that section we describe all the

developed module to develop our framework. All together we have developed ten

module, such as XML Parser, Java project names dumber, Java class names dumber,

Crawler and De-compressor, Abstract Syntax Tree, Identifier Splitter, Spell Checker

for good identifiers, Spell Checker and Word Finder for bad identifiers, Action verb

Extractor, and Matching and rating module. We discussed the purpose of all modules

and what are the tools and techniques used as pillars to develop the modules. We used

w3c DOM parser, GitHub API, JSOUP API, JUNRAR API, LZMA API, ECLIPSE

JDT API, and JAWS API as pillars to develop this framework.

The implementation part was a very important part

several implemented module, each module depends on
output of a module was an input to another module. Likewise, if and only ft we

implement the one module we can use a

research because we had

another module through an
in our

nother module. We used the Java language to

106

implement our

well as
framework because most of our planned pillars

developed a client-server application,

application’s work in Java so using the HTTP request and respond. In beginning, we

used Dynamic Time Waging to split the identifier for the bad identifiers. But we faced

two types of bug, one was the highest time cost to identify the meaningful English

words from the bad identifiers than

were as Java API. As

we can easily do the web
we

current approach. And another one, the DTWour

suggest a wrong word list for a particular identifier. So we shifted to the N-gram
algorithm instead of the DTW algorithm, we avoided these problem faced in DTW
algorithm usage through the usage of the N-gram algorithm. Even though the usage of

the WordNet to get synonyms is taking sometime but if we compare with the DTW,

the time is less.

:

<

As we discussed earlier, the GitHub API is a new component in the GIT forge, using

GitHub API, we can do all GIT activity, we can have all the repository names classified

by all the programming language, and we can have all the name of the program Source

file. We integrated the GitHub API to having all the repository names and all the .java

file names. But the integration of the GitHub API was very difficult because that was

a new component in the GIT forge. The GitHub maintain a support team to help the

and the researchers when the API integration. They know that thedevelopers
developers and researchers will face a lot of problems when they try to integrate the

GitHub API. In which situation, they can make a request for a help from the support

teams, at the moment they will respond to the request. 24 hours the support team will

be ready to help.

analyzed the identifiers.Difficulties and the challenges were very high when
all the developers are lazy, that is what they do not use the foil

, instead of using foil word, they shrink the

we
The
As we discussed earlier

English words to produce the identifiers
more than two abbreviated terms to produce an

we can identify
words to create the acronym. They use

followed any naming convention

identifiers. Otherwise, it will be a very difficult process
identifier. In that situation, if they

the meaningful words from the
107

to identify the meaningful English words from the identifi

the words very badly, fo
Sometimes, they shrink

example they shrink the word “length” into “In”,
human it will difficult to identify the words from the token, but

impossible. That is what we developed an algorithm to overcome the difficulties.

ers.
r an

as a

to the machine it is

Although it was a challenging process we have developed a framework to address the

research problem that we discussed in the introduction section. Our developed

framework has higher accuracy in all phases

in downloading the related projects depends on the class diagram information with

some other additional projects, as given in the Table 5.1,734 projects was downloaded,

even though 729 was unwanted projects 5 targeted projects was downloaded.

However, these 729 projects were related in any of instant of the information given to

download these projects from the class diagram. And finally, we took all the targeted

5 projects. From the 5 projects (vraptor contains 15 source code files, PrintWB

contains 8 source code files, BusMan contains 6 source code files, listview2 contains

2 source code files, and BST contains 3 source code files) we extracted 34 .java files,

and all the source code files together contain 3985 lines of source codes. We got 478

identifiers from these .java files in which 472 good identifiers and 6 bad identifiers,

from the Good identifiers, totally there were 679 split terms, 131 meaningful

Dictionary words, and 548 unknown terms.

discussed earlier: 100% accuracyas we

Our developed SpellChecker suggested 2103 related word for 448 split terms out of

548 unknown terms. Our developed SpellChecker could not identify the meaningful

. So we treated theEnglish words for 100 unknown terms out of 548 unknown terms
bad identifiers, already we were having 6 bad identifiers so

The developed tool could not identify
100 unknown terms as

totally there were 106 bad identifiers,
approximately 6% of the good identifiers, which were abbreviated in very bad manner.

for this level to be 94% in identifying the
We therefore, claim the tool accuracy
meaningful words from good identifier, Our proposed algorithm suggest

related words for 106 bad identifiers. Our Algorithm tdenttfied only

304

108

meaningful words from the 106 bad identifiers, because of the unknown terms

badly abbreviated, and did not follow the Naming Convention. However, it failed to

identify about 13% of the bad identifiers. However, through the overall analyzing and

matching process all the .java files of the targeted 5 projects were suggested as relevant

.java files. So matching and rating process module had 100% accuracy.

are so

Accuracy of All Modules
100100 I100 ■I

(
95

•:
U

Hr
<13

:9013
u :u :<

85

Modules

Figure 6.1: Accuracy of all Modules

6.2 Limitation and Future Work

We have few limitations

these limitations and we have a

describes our future work.

i„ this developed framework. The section 6.2.1 describes

plan to extend oor study and work. The sect.on 6.2.2

109

6.2.1 Limitation of our work

In this research, focused only on the class diagram as the Software Architecture,
ur developed framework starts the process from a class diagram

so the developer needs

we

in the XML format,
to enter the class diagram in the XML format into

framework. When the designer develops a class diagr

identifier (attributes, method, and class

our

am and give a name into an

names) they should follow any naming

or an explicit separator for the composite
identifiers. As well as they should not abbreviate the words. These

convention whether it is Camel case

are the current
limitations to the designer for the software tool we developed and this must be

improved in future. After entering a class diagram into our framework, it will do the

all process itself automatically. As we discussed earlier, in this research, we have

focused only on the class diagram as a software architecture, and we have completed

all the work successfully using the class diagram, so we can do the same work for all

other software architecture which is in XML fonnat file.

i

Another limitation is that we download only the Java projects, and we analyzed only

the Java source code, and we have done the above-mentioned work successfully, so

can do the same work for all other programming languages. Another very important

limitation is that the size of the project file is to be downloaded into 50 megabytes. So
we

downloading the projects which have the file size more than 50 megabytes is

prevented. We check the file size in the respond to the HTTP request, if the file size is

avoid the project. Because this research workthan 50 megabytes, then
the small and the medium software companies, so very big projects

wemore

targeted only on

not suitable for them. As well as we
into 100 by our crawlers. I. means when the crawler downloading the projects we conn,

100, we stop the crawler, because already

. So it will download

limit the number of projects to be downloaded
are

our
the number of projects if it reaches to

downloaded the targeted projects within 100 projects
crawler has
all the most relevant project within 100 projects.

110

6.2.2 Future work

In fixture development, we planned to include automatic Design pattern suggestion

with our developed framework. When a software architecture gets into the

development process, the developer needs to search relevant sample code or libraries,

foi that, we developed a framework which is capable of doing the process

automatically; an extension feature would be to support the developers by giving them

help to select a proper design pattern. If the software company has one expert in a

particular context, the expert person will suggest the proper design pattern but we focus

only on the small and the medium software company. They cannot maintain like that

expert people because if they maintain like that people, they have to pay more money

as salary for them. That is what they want a help to get a proper design pattern. So we

plan to extend our framework to automatically select a proper design pattern in a

planned to use the Case-Basedparticular situation. For this selection process,
Reasoning (CBR) is one of the most successful applied Artificial Intelligence

we

technologies of recent years and the act of the developing solutions to unsolved

problems based on pre-existing solutions of a similar nature.

Ill

Reference

[1] ‘ 2015U0?5 W6b $ite’ httPs://Sourcef^ge.net/about

[2] ' SnTf™?6 WCb SitC’ https://Code.google.com/,
1 oj, 2016.

[3] . Krugle Source Code search engine home web
[Online accessed 14-April-2017], 2017.

[4] . Koders Source Code search engine web site home page, http://Code.openhub.net/
[Online accessed 14-April-2017], 2017.

[5] . Codase Source Code search engine web site home page, http://www.codase.com/,
[Online accessed 14-April-2017], 2017.

[6] . GitHub web site home page, https://github.com/, [Online accessed 14-April-
2017], 2017.

■ [Online accessed 10-june-

[Online accessed 23-januarry-

page, http://www.krugle.com/,

[7]. Nioosha Madani, Latifa Guerrouj,"Recognizing Words from Source Code
Identifiers using Speech Recognition Techniques," presented at the CSMR 2010
14th European Conference at Madrid, Spain, March 2010.

[8]. Google Code search engine definition and its purpose, [online accessed 18-April-
https://www.revolvy.com/main/index.php?s=Google%20Code%202017],

Search, 2017.

[9]. Ohloh, krugle, definition, http://www.makeuseof.com/tag/open-Source-matters-6-
Source-Code-search-engines-you-can-use-for-programming-projects /, [Online
accessed, 18-April-2017], 2017.

[10] Kalpana B. Khandale,Ajitkumar Pundage,C. Namrata Mahender, “Similarities in
words Using Different Pos Taggers”, International Conference On Recent
Advances In Computer Science, Engineering And Technology, 25 June, -016.

nil Aoostolos Kritikos, George Kakarontzas and Ioannis Stamelos ”A semi-
' automated process for open Source Code reuse”, presented at 15th International

Conference, ICSR-2016, on June 5-7, 2016.

[12]. Otavio Augusto Lazzarim
Masiero and Cristina Lopes

ini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar
, “Applying Test-driven Code Search to the Reuse

112

httPs://Sourcef%5ege.net/about
https://Code.google.com/
http://Code.openhub.net/
http://www.codase.com/
https://github.com/
http://www.krugle.com/
https://www.revolvy.com/main/index.php?s=Google%20Code%20
https://www.revolvy.com/main/index.php?s=Google%20Code%20
http://www.makeuseof.com/tag/open-Source-matters-6-

Comp^onrLTSoTS“'ed “ 'h' 2°W ACM “ APP“

m °f uw *

[M]' zltr,r "TCS’ D°nod BrCn’ A‘ L' Lemos’ Adriano C- de, Paula, Felipe C.
Zamchelh, Thesaurus-Based Automatic Query Expansion for Interface-Driven
Code Search published at 11th Working Conference on Mining Software
Repositories, Hyderabad, India, on May 31 - June 1 2014.

[15] , Steven P. Reiss, Department of Computer Science, Brown University,
"Specifying What to Search for”, Presented at 2009. SUITE ’09, ICSE Workshop
on 16 May 2009.

[16] . Adrian Kuhn, Florian S. Gysin, “A Trustability Metric for Code Search based on
Developer Karma”, presented at 2010 ICSE Workshop on Search-driven
Development on May 01 2010.

[17] . Sushil K Bajracharya, Joel Ossher, and Cristina V Lopes, “Leveraging Usage
Similarity for Effective Retrieval of Examples in Code Repositories”. Presented
at ACM S1GSOFT international symposium on Foundations of software
engineering, University of California, Irvine, CA, USA November 2010.

[18]. Git and GitHub definition and related informations, https://www.howtogeek.com
[Online/180167/htg-explains-what-is-github-and-what-do-geeks-use-it-for/

accessed, 05-Januarry-2017], 2017.

[19]. Search API of the GitHub, https://developer.github.com/v3/search/, [Online
accessed, 23-june-2016], 2016.

“An[20] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze,
Introduction to Information Retrieval”, 2009 Cambridge University Press,
Printed on April 1, 2009.

Crawler definition http://searchmicroservices.techtarget.com/definition/ crawler,
[Online accessed, 13-Januarry], 2017.

API, https://jsoup.org/apidocs, [Online,

[21].

accessed 12-jan-2016],
[22]. JSOUP Java

2016.
/2014/11/what-are-n-r23] N-gram definition, http://text-analyticslOTrxnlp.com

grams.html, [Online Accessed, 25-Januarry], 2 .

113

https://www.howtogeek.com
https://developer.github.com/v3/search/
http://searchmicroservices.techtarget.com/definition/
https://jsoup.org/apidocs
http://text-analyticslOTrxnlp.com

[24]. William B.
presented at In ProcTedbgs^fSDAm 94 d TeXt Calegorization”’
Analysis and Info™ationTetrievaU 994 SymP°S,Um °"

[25],

[26] , Part-of-Speech Tagger, http://language.worldofcomputing.net/postagging/parts-
of-speech-taggmg.html, [Online accessed, 23-February-2017]

[27] , Matthew J. Howard, Samir Gupta, Lori Pollock, and K. Vijay-Shanker,
“Automatically Mining Software-Based, Semantically-Similar Words from
Comment-Code Mappings’, published on 10th Working Conference on Mining
Software Repositories, 2013 May 18.

[28] . Emily Hill, Lori Pollock and K. Vijay-Shanker, “Automatically Capturing Source
Code Contaxt of NL-Queries for Software Maintanence and Reuse" published
on Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference, May 2009.

[29] . Madhuri R. Marri, Suresh Thummalapenta, Tao Xie, “Improving Software
Quality via Code Searching and Mining”, Presented at 2009. SUITE '09, ICSE
Workshop on 16 May 2009.

[30] . Tao Xie, Suresh Thummalapenta, “PARSEWeb: A Programmer Assistant for
Reusing Open Source Code on the Web”, presented at twenty-second
IEEE/ACM international conference November 2007.

er.shtml, [Online

,2017.

[31] Miltiadis Allamanis, Christian Bird, Charles Sutton, Redmond, “Learning
Natural Coding Conventions”, published at 22nd ACM S1GSOFT International
Symposium on Foundations of Software Engineering, 11 November 2014.

~ Parser, https://www.tutorialspoint.com/java_xml/java_xml_parsers.htm,
[Online, accessed 10-june-2015], 2015.

[32], XML

http://wiki.c2.com/7AbstractSyntaxTree, [Online
[33]. Abstract Syntax Tree,

accessed, 03-March-2017], 2017.
o • ^ * Qatin Malik Lori Pollock, “Part-of-Speech Tagging of Program13 '■ ZfijtIS- siawar. Engineering Tools" Presented

Program Comprehension (ICPC), 2013 IEEE 21* International Conference on.

21 May 2013.

114

http://language.worldofcomputing.net/postagging/parts-
https://www.tutorialspoint.com/java_xml/java_xml_parsers.htm
http://wiki.c2.com/7AbstractSyntaxTree

Search Eng^e^^Tentedtt'S^’Lowl'd118 n '"8 Yah°° Image ^ Web

August 12, 2012, Beijing, China. °W 6 86 DlSCOVery and Data Minin&

[361‘ worf recognition'"nreT?!?86 J™™' pr0gramming alg™thm for connected

[37] , V. I. Levenshtein, “Binary Codes capable of correcting deletions, insertions, and
reversals, Cybernetics and Control Theory, no. 10, pp. 707-710, 1966.

[38] . Document Object Model, https://www.w3.org/DOM/, [Online
March-2017], 2017.

[39] . P.Pirapuraj, Dr.Indika Perera, “GITHUB Application Program Interface and
WordNet for Code reuse”, presented at Fifth Annual Science Research Session-
2016, South Eastern University of Sri Lanka.

[40] . Class JSONObject, https://docs.oracle.com/middleware/maf240/mobile/api-
ref/oracle/adfmf/json/JSONObject.html, [Online accessed, 10-March-2017],
2017.

[41] . Class JSONArray,
ref/oracl e/ad fmf/json/J SONArray.html, [Online accessed, 10-March-2017],
2017.

[42] . Giriprasad Sridhara, Emily Hill, Lori Pollock and K. Vijay-Shanker, “Identifying
Word Relations in Software:A Comparative Study of Semantic Similarity
Tools,” presented at the 16th IEEE International Conference, Amsterdam,
Netherlands, June 2008.

[431 Lars Heinemann, Prof. Dr. Dr. h.c. Manfred Broy Prof. Martin Robillard, McGill
University, Montreal, Kanada. “Effective and Efficient Reuse with Software
Libraries'’ presented at the 20th ACM SIGSOFT International Symposium on
Foundations of Software Engineering Jully 2012.

T441 D I awrie C Morrel, H. Feild, and D. Binkley, “What’s in a name? A study of
’ identifiers’,” in Proc. of the International Conference on Program Comprehension

(ICPC), 2006, pp. 3-12.

accessed, 5-

http://docs.oracle.com /middleware/maf222/mobile/api-

[45,. Steven P. Reiss DePa=. -

115

https://www.w3.org/DOM/
https://docs.oracle.com/middleware/maf240/mobile/api-
http://docs.oracle.com

Differencing Algorithm Lobiec e?ndr0Hp0rSO’ Mary Jcan HarTold’ "A
international conference on Autom^d't^°grams"’ Presented at 19th IEEE

Society Washington, 2004-09-20 ^ englneerin& IEEE ComP“^

[47] , Jens Krinke, "Identifying Similar Code with Program Dependence Graphs"
IEEEC6 ^ ?8qth Worklng Conference on Reverse Engineering (WCRE'01)’
IEEE Computer Society Washington 2001-10-02.

[48] . Martin P. Robillard, "Automatic Generation of Suggestions for Program
Investigation", presented at 13th ACM SIGSOFT international symposium on
Foundations of software engineering, New York, NY, USA 2005-09-05.

[49] . Adrian Kuhn, Automatic Labeling of Software Components and their Evolution
using Log-Likelihood Ratio of Word Frequencies in Source Code", presented at
09 Proceedings of the 2009 6th IEEE International Working Conference on
Mining Software Repositories, Washington, DC, USA 2009-05-16.

[50] . Ashish Sureka, "Source Code Identifier Splitting Using Yahoo Image and Web
Search Engine", presented at First International Workshop on Software Mining,
New York, NY, US A 2012-08-12.

[51] . Oliver Hummel, Werner Janjic, Colin Atkinson, "Proposing Software Design
Recommendations Based on Component Interface Intersecting", presented at
2nd International Workshop on Recommendation Systems for Software
Engineering, 2010-05-04.

[52] . Abstract Syntaxt Tree, https://en.wikipedia.org/wiki/Abstract_syntax_tree,
{Online, accessed 12-March-2016], 2016.

[53]. Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp, “Improving the
tokenization of identifier names”, presented at European Conference on Object-
Oriented Programming, volume 6813 of Lecture Notes in Computer Science,
pages 130-154. Springer Verlag, 2011.

[541 Girish Maskeri, Santonu Sarkar, Kenneth Heafield, "Mining Business Topics in
Source Code using Latent Dirichlet Allocation", 08 Proceedings of the 1 st India

software engineering conference 2008-02-19.

Social Trustability of Code Search Results",
Software[55)- F'™J- rS„d''m=EEE International Conference on

Engineering - Volume 2, 2010-05-01.
Erik Linstead, Yimeng Dou, Paul Rigor, Pierre

A Search Engine for Open Source Code1561

116

https://en.wikipedia.org/wiki/Abstract_syntax_tree

bS SortOWMorieM2rCl’'’ PreSen,ed 2,St ACM SIGPLAN
applications, 2006-loS ^antmtng systems, languages, and

i571‘ vm's™™ 'I™'5'’Colli" "Automatic Documentation Generation
™ t , r f Summarization of Method Context" presented at 22nd
emational Conference on Program Comprehension, 2014-06-02.

[58] . Github API,
2016.

[59] .GitHub searching API API, https ://api.github.com/search/repositories?q=
tetris+language:assembly&sort=stars&order=desc, [Online, accessed 27-may-
2016], 2016.

[60] . Eric Enslen, Emily Hill, Lori Pollock, Lori Pollock,Lori Pollock, "Mining Source
Code to Automatically Split Identifiers for Software Analysis", presented at 6th
IEEE International Working Conference on Mining Software Repositories,
2009-05-16.

[61] . Oleksandr Panchenko, "Hybrid Storage for Enabling Fully-Featured Text Search
and Fine-Grained Structural Search over Source Code", presented at Search-
Driven Development-Users, Infrastructure, Tools and Evaluation, 2009. SUITE
'09. ICSE Workshop,Vancouver, BC, Canada, 16 May 2009.

[62] . Steven P. Reiss, "Seeking the User Interface", presented at 29th ACM/IEEE
international conference on Automated software engineering, 2014-09-15.

https.//developer.github.com/v3, [Online, accessed 21-may-2016],

and its related informations, https://www[63]. Version control systems
. smashingmagazine.com/2008/09/the-top-7-open-Source-version-control-
systems/, [Online accessed, 1 l-Januarry-2017], 2017.

in GitHub. https://github.com/new, [Online accessed 13-March-[64]. Repository
2016], 2016.

[65]. Taggest list of Part of Speech tagger. http://gitqwerty777.github.io/imgmLP

/tagset.png [Online accessed 20-January], 2016

[661 Online version of Stanford Spell Cheeker. ht,p://«ww.spellcheckmenhow.do-
ell/stanford, [Online accessed 02-January], 2016.you-sp

liHRARY/ UOrv"

/RECEIVE 0\\p

09 FEB2018 ~
AQ-SECTIONy ,

— “——

i20117

l CO
• * ; \ Hui

I w

https://www
https://github.com/new
http://gitqwerty777.github.io/imgmLP

	TH3497-1
	TH3497--2

