
Scalable Fault Tolerant Architecture for Complex
Event Processing Systems

H.C. Randika1, H.E.Martin1, D.M.R.R. Sampath1, D.S. Metihakwala1, K. Sarveswaren* and M. Wijekoon2

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.
-'Creative Solutions Pte Ltd. Sri Lanka.

Section III, “Overview of the Components", will describe
the details of the major components of the architecture.Abstract — Complex Event Processing (CEP) is one of the

emerging areas in computer science and it is being heavily used
in real time systems during the recent times. CEP systems should
be scalable and fault tolerant. The research project epZilla is to
build a scalable, highly available and fault-tolerant distributed
architecture for CEP systems. Software Transactional Memory,
Leader Election algorithms, dynamic load balancing, dynamic
service discovery,
Stratification are the concepts which are used to build the
proposed architecture. The results of the pilot run are promising
and show that the proposed architecture is scalable and fault
tolerant.

Section IV, ‘introduction to the System", will describe
how the concepts that are mentioned in the “Background" are
used in the actual implementation.

log based recovery algorithms, and Section V, “Performance Results", will describe the
performance details of the pilot implementation of the
architecture.

Section VI. “Future Works", will describe the further
development areas of the proposed architecture.Keywords — CEP, Distributed Systems, Dynamic Discovery,

STM, Stratification
Appendix I shows the high level system architecture of

project epZilla.

I. INTRODUCTION

Today most of the business has increasing demand for
distributed computing applications. This is mainly because of
the expansion of businesses. In some of the businesses, it is
required that several thousands of events be processed, which
is generally not achievable using centralized systems and this
motivates the usage of distributed systems in business
applications.

The Complex Event Processing (CEP) paradigm is
becoming increasingly popular in modem businesses.
Basically it allows identifying of patterns among large amount
of raw data which is processed real-time, which makes it more
desirable to build CEP systems using the distributed
computing paradigm. However, due to increasing loads and
high availability requirements, instead of designing
distributed systems with arbitrary architectures, it becomes
important to take into account scalability and fault-tolerance
while designing such systems. The project epZilla is
solution which provides scalable and fault tolerant distributed
architecture for Complex Event Processing systems.

In this paper chapters are organized in the following
mentioned order. Each of the sections is dedicated to provide
the reader a good understanding of the system and all the
iclevant concepts used in the system will be described within
the sections.

Section II, “Background", will describe the major concepts
that are used in the development of the architecture and the
implementation of project epZilla.

II. Background

This section is focused on describing major technologies and
concepts used in the project.

A. Distributed Systems
A Distributed system [1] is a collection of two or more

processing units. Typically distributed system uses multiple
hardware units, typically hosts that are used collectively to
provide a service. These hardware units can be hosts,
networks, routers, switches, etc. In a typical enterprise level
distributed system, these hardware units are connected using a
high speed network for intercommunication. Functionality of
the system is distributed among many processes, which
facilitates parallel processing.

In a multicomputer distributed system, it becomes possible
to create redundant processing units with same computer
programs running in different hosts. So each machine can be
used to process same input in a redundant manner. In this
scenario, distributed systems can work as a mirror or a
replicate [2] processing unit for the original processing unit.
Important properties of a distributed system include high
availability, high throughput, and low latency. In order to
have better performance there need to be a proper load
balancing mechanism. Load balancing concepts will be
discussed in a later chapter.

B. Complex Event Processing (CEP)
Complex event processing is one of the primary areas this

research is based on. In simple terms, Complex event
processing refers to searching of a given event streams against

a

U7

memory- The reads and writes of each transaction logically
occur at a single instant in time (atomically). Thus
intermediate states are not visible to other transactions which
are executing concurrently.

The concept of software transactional memory can be used
distributed systems as well to maintain consistent and

to-date objects replicated over several nodes in the network
This approach can solve most of the data inconsistency
problems which occurs due to link and process failures in
modem distributed systems. The software transactional
memory can synchronize any number of shared variables
between any numbers of nodes thus ensuring all the nodes
have identical information at all times.

a given set of queries for finding meaningful relationships
among these events based on criterion defined by the given
set of queries. CEP systems are capable of conducting
operations such as complex pattern matching, event
correlation, abstraction, hierarchical organization, causality,
membership, timing etc [3).

As an example for potential CEP application, we can
consider a set of transactions in a Stock Market as the set of
events and we can consider a set of rules like Time difference
between transactions of a same person of same listed
company, number of consecutive trades of same company,
fluctuations of stock value etc. In complex event processing,
system searches for any matching set of transactions in the
given set of transactions. If something can be derived from
the incoming set of transaction details, which are events in
this context, system sends a reply as an alert message or by
some other means. Some other areas CEP can be used are -
air traffic controllers, weather forecast etc [4-6].

on up-

E. Remote Method Invocation (RMI)
In today’s business RMI [13-15] is mainly used as an

effective approach to connect two or more Java applications
run in different hosts. Typically RMI applications consist of
two separate programs, a server and a client. Typically in
server side, it creates some remote objects, makes references
to these objects accessible, and then waits for clients to
invoke methods on these objects. In a typical client side
program, it obtains a remote reference to one or more remote
objects on a server and then invokes methods on them. So in
RMI, it provides means by which the server and the client
communicate in the both direction. This is known as Call-
Forward and Call-Back mechanisms [13].

Figure 1 shows a high level architecture of how Remote
Method Invocation works.

C. Stratification
Stratification is a concept which can be used to modularize

CEP systems, which typically simplifies their design and also
provides enhanced scalability as an added advantage. There
has been a researches [7-8] carried out by researches on this
area.

The term stratification, which is derived from earth
resource engineering, refers to the establishment of layers. In
this technique [7], each event processing definition is mapped
to a specific event processing agent type. Then a graph is
created which contains event processing agent types (vertices
of the graph) and their connections (edges of the graph). Raw
incoming events to the system are represented by an edge
which has only a target vertex. Similarly, derived event
emitted by the system to the outside is represented by an edge
without target vertex but with a source vertex. After defining
the graph as above, it is subjected to certain modifications to
eliminate redundancy and also to make it optimal for
processing.

After above process taking place, the actual stratification
algorithm is applied. It starts by first finding independent sub
graphs within the event processing dependency graph. Then
the stratification algorithm converts each such sub graph to an
event processing sub-network by assigning and event
processing agent for each event processing operation type.

Then again the algorithm examines the event processing
graph to identify the sub-graphs with strict independence
(which refers to the sub graphs with no connecting edges).
Such sub graphs are then turned to be stratum levels. With
this operation, the event processing network becomes
completely stratified.

te
Look up ----

RMI registry

Register

RMI client

Invoke

D. Software.Transactional memory (STM) RMI server
Software transactional memory [9-12] is a concept

originating from concurrent programming which deals with
controlling concurrent access to shared memory. It is
analogues to handling database transactions in any modern
database system. Instead of using locks to serialize access to
objects, the updates to the shared memory objects are done
concurrently in the context of transactions. A transaction
be described simply as a piece of code that executes a series
of reads and writes to one or more objects in the shared

Figure 1: RMI architecture
The remote objects in RMI application can be used as

normal objects and the behavior of it is described by the
interface. So this can be defined
has properly defined interface and underlying operations.
Services are used by the clients without knowing their
underlying implementation. Ultimately clients only need to
know how to access the service rather than knowing how the
services work. RMI applications

software component thatas a

can

also referred to asare

118

distributed object applications where references to remote
objects can be found through RMI registry. Typically what
happens is server application binds a name with remote"object
in its RMI registry. And client looks up the remote object in
the server’s RMI registry to obtain the reference and then
starts invoking methods on it. RMI registry holds details
about server objects and provides the naming mechanism.
rMI uses Java Remote Method Protocol (JRMP) on top of
TCP/IP in the communication process [14].

One of the unique features of RMI is dynamic code loading.
This enables dynamically extending the behavior of an
application. This ability allows new types and behavior to be
introduced into a remote Java virtual machine, thus
dynamically extending the behavior of an application.

Transactional Memory (STM). All dispatchers accept triggers
from the client and add them to a shared List in the STM.

The primary dispatcher assigns the triggers to each Node
cluster. The set of triggers, assigned to each cluster, is
determined by the total number of triggers fed to the system
and the interdependencies among the trigger set. Events
received from the clients are not added to the STM. Instead
all the events are routed to the registered Node Cluster
leaders.

Figure 2 shows a high level architecture of a single
Dispatcher.

User Interface
F. Dynamic Service Discovery
Service discovery is a concept which has evolved with the

Service Oriented Architecture (SOA). Service discovery
allows automatic detection of devices and sendees offered by
these devices on a computer network [16]. This service
discovery allows software to make changes to themselves
while the software is running. Hence the availability- and
reliability of the system will not be affected by the changes of
the software runtime parameters such as input load. Service
discovery is widely used with Web Service and OSGi Remote
Services. But in this paper we are discussing how to use
dynamic discovery of Java Remote Method Invocation
Services.

Distribution Logic

Data manager
(

RMISTM

w
Figure 2: Dispatcher component

B. Node
The cluster nodes are the most important components of the

architecture. These nodes do the actual event processing of
the system. All the other nodes are performing the supporting
functionality. The actual number of event processing cluster
nodes determines the performance of the system. The
dispatchers are used to efficiently route events and triggers to
the cluster nodes. The cluster node contains an event
processing engine which does the actual processing. This
engine can be any modem event processing engine.

Implementation of the cluster node facilitates the event
processing engine to successfully process a stream of events.
During the processing of the events each node does a self
calculation of its load and sends that information periodically
to the leader of the node cluster. The leader does the dynamic
load balancing of the cluster by adding or removing nodes to
the cluster based on the load on all of its nodes. Dynamic load
balancing functionality will be discussed in the next section.

G. Leader Election and Election Algorithms
Leader of a distributed system handle the distribution of

events, synchronization of components, etc. Since different
components of the distributed system are interconnected with
each other using computer networks, then we use messaging
from one component to another. If the interconnections
between nodes are dropped by some mean, other nodes will
not be able to connect to the leader. In that case, distributed
system has to elect a new leader. Algorithms we use to elect
leaders in distributed systems are called as election
algorithms. These algorithms are classified based on the
network topology they can be applied and etc. We use low-
level methods such as sockets to exchange messages or higher
level methods such as Java RMI. In this paper the system will
use Java RMI.

III. Overview of the components

This section aims at familiarizing the reader with the different
components bundled to build up the system. System consists

four major types of components. Dispatcher. Node,
Accumulator and Name Server are the main components.

d. Dispatcher
Dispatcher is one of the critical units of the system w hich is

responsible for routing the incoming events and triggers to the
Node Cluster. The systems architecture is designed to have
several dispatcher nodes. The actual number ol dispatchers to
be used is determined by the performance and reliability
requirements of the user of the system.

AH the Dispatchers in the system are
other dispatchers are connected through a

Figure 3 shows a high level architecture of a single Node in
epZilla.

User interface

Event processing logic

Data manager

Event processor
active. Primary and

Software ■ “
RMISTM

i
Figure 3: Node component

119

• The list of client details.
• The list of registered cluster leader details.

C. Accumulator
The systems architecture can have any number of result When the systems initializes, one of the dynamical!

accumulators depending on the requirements, event discovered dispatchers is elected as the leader through the
processing load and the desired level of fault tolerance. ieader election algorithm. Implementation of Leader election
Accumulator is responsible for accepting partial events, what ancj Dynamic service discovery will be discussed later in this
we refer to as derived events in this context. The accumulator

y

chapter. The elected leader starts as a STM server and
accepts the results of the actual event processing sent by the initializes the STM. The other dispatchers connect to the
cluster nodes. Since each event is processed by several node STM server as clients. The STM server adds the lists of data
clusters which have different triggers assigned to them, the to be synchronized among the available dispatchers,
accumulators wait till all the clusters have sent the processed
results and then build a total result per single event and send
that result back to the client. Each event is sent to at least two

Implementation of Accumulator and Nodes use the same
concepts as mentioned above. Node cluster STM is used to
synchronize the following details among the Nodes of a given
cluster.accumulators to achieve fault tolerance in case of a single

dispatcher failure. There is a Notification system implemented
in the Accumulator which can send the generated Alerts to the
relevant Client.

• The list of triggers assigned to that cluster.
• The list of node IPs of that cluster.
• The average performance data of all the nodes in the

cluster.
D. Name Server
Name Server is for keeping all the details of the

Dispatchers and for allowing Dispatchers to register on it. It is
a facilitator which provides lookup functionality for clients,
which can be used to track dispatchers.

When a client performs the look up operation, Name Server
replies the details of a Dispatcher service which has the
minimum load. Load of a Dispatcher is determined based on
several factors, including the number of clients connected to a
particular Dispatcher and the availability of the Dispatcher, maximum performance of the system together with the highest
Load balancing of the Dispatchers is handled by the Name possible availability. Only the data crucial to the continuous
Server. This will be discussed in the next section operation of the system is stored in the STM

Since STM highly depends on the network we put extra
consideration on what types of data to store on the STM. In
our system, we make sure that STM is not used to contain
frequently modified data. This is to make sure to reduce the
number of transactions happening in STM ir, order to prevent
unnecessary bottlenecks. In the epZilla architecture, we
control the STM usage in a way which facilitates the

B. Scalability
IV. System Functionality The epZilla architecture is designed to achieve scalability

This section describes the key functionality and the according to the system load. Scalability is achieved in a way
characteristics of the system such as Fault-tolerance, such that system can scale up either horizontally or vertically.
Scalability and Load balancing. Implementation details of the The term ‘cluster’ is used inside the scope of the project itself
functions are described under the relevant topics. rather the traditional meaning of it.

Figure 4 shows how the horizontal scaling is done in the
epZilla. This is to ensure that a cluster has the capability to
grow to accept the incoming load.

A. Fault Tolerance
Fault Tolerance is considered to be one of the key

characteristics of the system. The epZilla architecture
provides fault tolerance by node replication. And the STM is
used to synchronize the replicated nodes. Node replication is
a straight forward way of implementing fault tolerance.

In the system, the critical nodes of the system are given
backup nodes to replace them in the occurrence of a fault. So
the backup node must be prepared to take over the
functionality of the original node at any given time.
Replication can be done in either active or passive mode [17].

In the solution we are using passive replication replicate the
data and use software transactional
results between the replicated nodes.

In the dispatcher STM implementation it manages the
scalability and fault tolerance of the dispatcher cluster of the
system. The STM synchronizes the critical operational data
among the set of dispatchers. The data synchronized by the
STM include

l Node 2 1Node 1

vTNode 3 Node 4

memory to share the Figure 4: Horizontal Clustering (Within the same cluster)

And the Figure 5 shows vertical scalability of foe
architecture, which means adding clusters to the system.

• The list of triggers and their cluster assignment
details.

120

■

and if the recipient is interested in about the arrival of new
component to the network and if the sender and recipient
belong to two component types, recipient sends a TCP
message and subscribes with the new component. If the
recipient and sender belong to same component type, and has
the same or higher status in the distributed system, recipient
does not send a TCP message but it updates its internal data
structures and start tracking the status of the new component.
But if the sender and recipient belong to same component
type and they have different status in the distributed system
and the recipient has a lower status than the sender in the
distributed system, the recipient sends a TCP message to the
sender and subscribe with the sender.

In this manner, we expand the system by adding new
components while system is running and the new component
is identified by the existing components and vice versa.
Dynamic Service Discovery information is exposed via the
Leader Election Component and its public API provide
methods to get these information.

Cluster 1

]Node 1 Node 2

r Node 3 Node 4

Cluster 2

| Node 1 □Node 2

]i Node 3 Node 4

"s 7

D. Leader Election
In general Distributed System is a collection of

interconnected hardware components. Since there are more
than one hardware unit in the system, they need to be
managed in terms of communication and tasks. Therefore
Distributed System requires a Leader for the system to handle
these management tasks.

Leader election of distributed system was a concern for the
development of the distributed systems. Therefore the
computer scientists and mathematicians introduced standard
Leader Election Algorithms for different types of distributed
systems such as Synchronous Distributed Systems and
Asynchronous Distributed Systems. These standard
algorithms are proved as correct by their founders and
therefore we use them without questioning their correctness.

In this project we implemented LCR Leader Election
algorithm which was introduced by Le Lann, Chang and
Roberts. The algorithm is named with initials letter of its
founders. This algorithm is used when the network topology
is a Ring and its early use was with Token Ring networks. But

distributed system is not depending on the network
topology, we are executing the algorithm in a virtual ring
where the sequence of the node is predefined using a
configuration file and all the other basic algorithm related
parameters are stated in configuration files. Distributed
algorithms are executed using state transitions using the
message passing. We prepared the Message protocol and state
transitions.

Leader Election component uses Dynamic Service
Discover) component to locate the nodes, dispatchers and
accumulators. The virtual ring is created using the discovered
components using the Dynamic Service Discovery.

Elected leader is reported to the system using messages and
the public API of the Leader Election component provides
methods to access the information about the Leader of the
cluster. Discovered Nodes, Discovered Dispatchers, etc. This
information is used by other components of the system for
their operations. As an example, Software Transactional
Memory component is initialized by the Cluster Leader. So

Figure 5 Vertical scaling (Add new Node Clusters)

C. Dynamic Sendee Discovery
Dynamic Service Discovery means locating network related

services and devices in a computer network while system is
running [16]. Jini [18] is one of the most widely used
mechanisms for Dynamic Service Discover)'. But in this
project we do not use Jini as its mechanism is appropriate to
implement a Publisher-Subscriber mechanism. Instead we use
our own mechanism which is explained below'. It supports
both Publisher-Subscriber systems very well and locating the
same components in the network.

Implementing such a mechanism for a distributed system is
very useful in several aspects. Main benefit is the ability' to
use it for system scalability. The importance becomes
significant when the system is configured for dynamic load
balancing. When the rate of the inputs to the system is high,
then the system’s load balancing component identifies it and
decides to increase the number of processing components in
the system to support the increasing input rate. Theretore the
dynamic load balancer
processing component using some special signal such as
Magic Packet. The problem is how the existing components
identify the new component and vice versa. So there shou
be a mechanism to identity the new components m t e
network by existing components and vice versa, this is w ere
Dynamic Service Discovery comes handy.

In dynamic service discovery' we keep track ot the current y
existing components in the system and implement^

our

simply wake an inactivecan

mechanism to identify the arrival of new components
as departure of existing components. We use IP mu ticasting
to identify the arrival of new components. Each componcn
multicasts its capabilities and running services via multicast
messages and each component have a multicast message
listener and a TCP message listener. When a component is
added to the system, it starts sending multicast messages an
the other existing components receive the message, eco

121

When lookup operation is performed by a client connected
to the system, Name Server replies the client with the details
of minimum loaded Dispatcher. This solution seems to be
promising for our problem since it deals with lot 0f
Dispatchers in a real time manner.

Advantages of this approach include:
• Client always connect to the Dispatcher having the

minimum load.
• Effective in a large environment, consist of multiple

Dispatcher units.

the STM access the Leader Election API to get the details
about the Leader.

E. Dynamic Load Balancing
The dynamic load balancing [19-21] is used in following

levels in the proposed architecture.
1. At dispatcher level
2. At node cluster level

a) Node Cluster dynamic load balancing
The Node Clusters of epZilla are designed in a manner such

that it will balance its load dynamically. In every cluster each
node does a self evaluation of its operational load
periodically. The throughput of each node is affected by its
current load, thus guaranteeing that no node is overloaded is
essential in maintaining the overall throughput of the system.
Since the actual event rate changes with time, the load on the incoming event. For a distributed CEP system where the
nodes of each cluster would vary with time as well. The best trigger base is replicated among all nodes, the requirement of

having all the triggers in each node causes limitation in
scalability as well, where system’s scalability depends on the

F. Trigger distribution
The size of the trigger base directly affects the performance

of a CEP system as larger trigger bases cause higher latencies
due to the fact that each trigger must be executed against each

way to cope with the changing rates is to expand and contract
the clusters with the event load.

In order for the clusters to expand and to contract with the ^east capable node,
event rate, each cluster needs to evaluate its own load level. To address this issue, we follow an approach where trigger
This is achieved through measuring the performance of each ^ase IS split int0 several disjoint sets after analyzing the
node in the cluster and by using that information to generate a possible dependencies among all triggers iri the trigger base,
single performance index that represents the total load of the This approach is based on a research carried out by
cluster. The CPU usage and the memory consumption of each Lakshmanan et al. [4], in which the system is composed of
node are measured locally. This information is periodically several layers where outputs of each layer become inputs for
added to the software transactional memory of the node ^e subsequent layer,
cluster. Our system consists of several clusters, each cluster having

The current leader of the node cluster periodically evaluates the same trigger set replicated among all nodes in the cluster,
all the performance details of each of the nodes and uses their All nodes in each cluster are synchronized via a software
average to generate a performance index for the cluster. The transactional memory which is used for storing triggers and
index is an integer value between 0 and 9. The index is processing state,
periodically sent to the main dispatcher. For assigning a cluster for a specific trigger, all of its state

retaining requirements are compared with all relevant existing
triggers and then several disjoint sets are formed. Triggers
which keep the same state are assigned to the same set. This
process forms several disjoint sets which can be greater than
the number of physical clusters available. Taking into

Advantages dynamic load balancing approach includes:
• Performance index send to the Dispatcher is used to

alter trigger distribution algorithm.
• When the index is found to be too high, the cluster

leader sends a RMI message to one of the idle nodes consideration the number of clusters available, multiple sets
and makes it join the cluster. are assigned to the same cluster approximating a uniform

• If the cluster leader finds that the performance index is distribution. These trigger sets share the same state among all
small it removes a node from the cluster and returns tlie nodes in the assigned cluster via its software transactions

memory layer.
Figure 6 represents a system with 3 clusters where trigger

b) Dispatcher level load balancing base contains 10 distinct disjoint sets. (Each oval represents
In this approach we use a combination of both round robin such a set triggers where the number of queries in the set is

and weighted load balancing mechanisms. This approach specified inside the oval.) Each cluster is assigned multipe
becomes useful in situations where there are many clients suc^ trigger sets so that the trigger base is approximate y
connecting to a system which consists of multiple Dispatcher uniformly distributed.
units. With this approach of trigger distribution, increasing tlC

In a typical scenario such as above, it is important to keep number of clusters facilitates the trigger base to be sealed up-
the work load of the Dispatchers at a minimum rate. When a Upon the receipt of a set of triggers, the system determines
particular client connects to the Dispatcher it will where the triggers need to be placed. This process, in the lung
automatically update its load and sends the information to the run> causes collisions. A typical scenario will be a trigger
Name Server. Name Server has the list of registered causing two existing trigger sets to be merged. In such cases*
Dispatchers and it updates the load for the relevant l^e two sets which are to be merged reside in two separa
Dispatcher. clusters, the system needs to resolve it by moving one triggf^

set so that both the trigger sets can be merged and place '
the same cluster. This process requires the system to be

it to an idle state.

\

L 122

temporarily as processing can’t be continued while trigger
sets are being moved. Depending on the incoming rates of
triggers, it is likely that this process can cause unnecessary'
delays in the system. To avoid that, we’ve limited the time
gap between two such operations so that it can’t go belo
user specified value. This causes a latency to exist before a
trigger becoming active in the system, however, it is
acceptable as the trigger rates are extremely low compared to
the event rates and smooth functionality and low latency of
the system is usually preferred by users over reducing the
initial latency before a trigger becoming active.

To provide support for the mentioned scenarios, we
implement a customized algorithm to read a log file and to
retrieve the triggers.

w a
H. Message passing in the sy stem
Following Figure 7 shows a high level architecture of the

epZilla [25]. ft shows how the message passing is done in the
project using RMI. All the shown paths are defined for the
routing of the Events and Triggers. Other than this, system
notifications from the Dispatcher to the Client and the Alerts
from the Accumulators to the Client are sent using the RMI
messaging.

Cluster I

-• Note ClustersSV
Dispatcherss

siame Server
Cluster 2

accumulators
2000 » Vl Circus

Figure 7. RMI message passing in the system

V. PERFORMANCE RESULTS
This section describes performance results obtained for

epZilla during the pilot run.

Cluster 3

900

A. XSTM performance results
Two machines were connected through a Local Area

Network and the times and network usages were measured for
sharing 10.000 objects via transitions between the two
machines.
Figure S shows the results of the transaction rate test. It

show s how the transaction rate changes with the time.

Transactions/sec

Figure 6: 3 Clusters with Disjoint Distincc Trigger Sets

G. Checkpoint based recovery>
Check-pointing [22-24] is the primary7 technique used in

recovering data from a system crash or any failure. Project
epZilla has followed this approach to keep the details of the
triggers. In
every' trigger sent by the Dispatchers to the Node Clusters.
Log is used in the stable storage to keep the details ot the
triggers. This is another approach used to provide additional
fault handling capability to the Dispatcher oi the system. We
used regular expressions to define the tags of the checkpoint
entry. For an example, the regular expression (*[ClD0-9]+
({10})$") is USed to identify the tags in a single entry ot
checkpoint file. It receives the information on the ClusterlD
und the Trigger send to the respective cluster.

Even when a total failure occurs at the dispatcher level, it
can be rolled back using checkpoint logs. It is critical to have
such a mechanism since the system needs to retain all the
{riggers received from clients without loss. So this mechanism
is used to recover all the triggers by replay logs.

i
implementation, a checkpoint is created torour

f
—Tra<natuom/;i'c;

.
512b 1Kb 2Kb 3Kb 5VU 10Kb 20Kb 30Kb SOKt- 70Kb

Object Size

Figure 8: Transaction rate Vs Object size graph

123

Accumulator. Test run was done for a single client jn
operation. All the components were interconnected using a
LAN network switch. .

When the Dispatcher receives the Triggers, it does the
dependency analysis, puts the Triggers to the STM. And the
Events received from the client are dispatched to the available
Leader Nodes registered in the Dispatcher. 1 he test is done to

the time taken to send Events to the Leader Nodes

Figure 9 shows the results for the network usage test, it
shows how the amount of network traffic changes with the
size of the objects being synchronized.

The results obtained in the tests were extremely useful in
our design of the architecture. It showed that even for small
object sizes, the maximum transaction rate possible was 52
Transactions/Sec which is extremely low compared to the

processing throughput that we were hoping to get. measure
Hence we decided to control the usage of the STM and to from the Client side. The entire message passing is done
only use it to synchronize the most critical data which is through RMI. All the time measures are taken from the
required to achieve fault tolerance. Hence the architecture was starting of first system call. Here it is called in the Event
optimized in a way to maximize the throughput while sending method in the Client application,
retaining the maximum possible amount of fault tolerance. Figure 10 shows how the event Dispatching rate varies with

The network usage of the STM was also not as critical as time in this scenario. When adding Events and Triggers in a
its slow object transaction rate. It did not affect our design as
much. Since we were anyway optimizing the usage of the
STM, the network usage factor was under control as well.

event

constant speed.
We can observe high Event Dispatch rate initially, but the

Event Dispatching rate drops with the time and at the later
stage it comes to constant rate of 40 Events/sec. Here we see a
drop of Event Dispatch rate because we add Events and
Triggers simultaneously into the Dispatchers and because
STM tractions happen frequently as triggers are added. So

say that the Event Dispatch rate reduces due to the
STM transactions and with the time Event Dispatch rate
comes to a constant.

we can

Event Dispatch rate (Events/sec) !
300

I
*— Event Dispatch role

(CvefUs/secl
Figure 9: Network usage Vs Object size graph

°88SS88888§S§
Time (s)

B. Event/ Trigger dispatch process.
Figure 10: Event Dispatching (Simultaneously with Triggers)

Secondly, we initially sent 20,000 Triggers
Dispatcher after Event sending process started. Then we
maintained constant Event flow in the system and we didn t
add Triggers to the system on this period of time.

Figure 11 shows how the Event dispatch rate
the time in this scenario.

Process carried out on a simulated environment, where the
to theprocess initializes by calling to the event, trigger generator.

Configurations of machines used in the simulation process
are shown in the following Table 1.

varies withTABLE 1
TESTING ENVIRONMENT

Intel Pentium IV, 3 GHz,Processor

2 GBRAM

Windows XPOperating system

Apache Mavcn 2Build system

We used Intel Core 2 Duo computers for the testing
purposes in the above testing environment. We maintained
separate clusters for Dispatchers and computing Nodes while
allocating single node each for the Name Server and

124

Event Dispatch rate (Events/sec) VI. Future Work

This section is focused on describing further enhancements to
the proposed architecture.

i) Improvements to the STM

The Software Transactional Memory framework
implementation that we used for this project had a few
problems from the beginning. Even though it had all the
features that we were looking for it was not optimal. We had
problems with its high network usage and with the limited
object types that were able to be synchronized among nodes.
We were forced to use it because there were no other

-— Event Dispatch rate
(Evcnts/soc)

OOOOOOOOOGOOO

Time (s)
available implementation that had all the features that was
required for the usage in the project, and developing such a
framework from scratch was out of the question given the
time duration of the project.

Hence as a future improvement of the system we suggest
implementing a custom STM implementation specifically to
meet the exact requirements of epZilla. This would actually
improve the performance of the architecture in terms of event
throughput and make the whole system more efficient.

Figure 11: Event Dispatch Rates

Initially we get high Event Dispatch rate since Trigger
sending process was not initialized at that point. After that, we
can observe a sudden drop of the Event Dispatch rate because
we added a list of 20,000 Triggers to the Dispatchers’ STM.
In this test, we add Triggers only once. Because of this in the
remaining time period we observed steady Event Dispatch
rate which fluctuate between, 600 to 650 Events/ sec. By
comparing these results with previously obtained results we
can conclude that our implementation is confirmed to work
fast.

2) Improvements to the Dynamic Discovery1 Mechanism

In the current Dynamic Service Discovery component, one
component sends multicast message for each service running
in the component. As an example if we consider a node, it
sends a multicast message stating it is running a node service.
After running the Leader Election for its cluster, if it becomes
the Leader of the cluster, it starts sending a new multicast
messaging say ing it is running a node leader service. So now
it sends 2 different multicast messages. As a future
improvement to the project, we suggest to reduce the number
of multicast messages by sending one message per component
stating all the services it currently owns.

Another improvement is using a message compression
mechanism so that the size of the message is reduced. In this
manner we can optimize the bandwidth usage. But this step
has to be taken w ith special care after considering its affect on
system performance as this compression and decompression
process requires some processing to be done. Therefore the
system performance might reduce due to the delay in message
compression and decompression.

C. Dynamic Trigger Dependency’ Analysis
Figure 12 shows the performance results for the

implementation of an algorithm described in a previous
section was evaluated against various trigger loads for
execution times.

The test was run on a single machine with a 2.2 GHz Intel
Core 2 Duo processor and a 2 GB RAM with an instance of
STM running. The results imply that the implementation has
below 0(n2) time complexity and the implementation can
successfully be used in a system to analyze query
dependencies without causing significant performance
overhead.

Execution Time (ms)
3) Improvements to the Dynamic Load Balancing

The dynamic load balancing mechanism of the system can be
improved to better handle vary ing loads. Factors such as the
total network usage patterns can be used when scaling the
system. The current load balancing mechanism only uses the
CPU usage percentage and Memory usage percentage to
determine the load on a single node.

i

I
—■—Time (ms) !

4) Improvements to System Initialization

In the current system, initially we have to manually
designate each node as a dispatcher, cluster node or an
accumulator. The clusters can dynamically add or remove
nodes only after the system is up and running. But as a future

:
Time (ms)

Ugure 12: plotting of execution time against the number oftriggers fed to
the analyzer

125

[17] Guerraoui R., Schiper A., 'Fault-Tolerance by Replication jn
Distributed Systems.”

[18] “Jini Org” [Online]. Available http://www.jini.org/wiki/Main_Page
[Accessed: March. 12, 2010]

[19] Jain P., Gupta D.,"An Algorithm for Dynamic Load Balancing jn
Distributed Systems with Multiple Supporting
Nodes by Exploiting the Interrupt Service", International Journal of
Recent Trends in Engineering, Vol 1, No. 1, May 2009.

[20] Philp R. Ian, “Dynamic Load Balancing in Distributed Systems”, IEEE
Trans. Parallel and distributed system.

[21] Kremin 0. And Kramer J., “Methodical Analysis of Adaptive Load
Sharing Algorithms,” IEEE Trans on Parallel and
Distributed Systems, vol. 3, pp. 747-760, November 2005.

[22] Neogy S., A. Sinha and Das P. K. “Checkpoint Processing in
Distributed Systems Software Using Synchronized Clocks",
Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC .01)

[23] Zhen G., ct al. “Performance Evaluation of Automatic Checkpoint
based Fault Tolerance for AMPI and Charm-H-" Available:
http://portal.acm.org/citation.cfm7id31131322.1131340.

[24] Wu J., "Distributed System Design", 1998-08-06
[25] Project epZilla, A scalable Fault Tolerant Architecture for Complex

Event Processing Systems, http://www.epzilla.nei/.

improvement we would use a single node to determine which
of the available nodes are assigned to the specific roles based
on the characteristics of the node. This would remove all
manual intervention and make the system deployment much
easier.

VII. Conclusion

A scalable and fault tolerant architecture is important for
CEP systems which are typically real time distributed
systems. The results of the test run of a CEP system on the
proposed architecture are promising. Based on the results, we
strongly believe that the proposed architecture is scalable and
fault tolerant and it is suitable for deploying CEP systems.

Acknowledgment

We are grateful for insights from Dr. Shehani Weerawama,
Dr. Buddinath Jayathilake and Dr. Shantha Fernando.

References
[1] Crane M., Podesta K. (2002, November). “Distributed Systems, (A

very basic introduction of real world examples)”, [Online]. Available:
http://www.computing.dcu.ie/~kpodesta/distributed/. [Accessed: Mar.
31,2009],

[2] Powell D., "Distributed Fault Tolerance: Lessons from Delta-4," IEEE
Micro, vol. 14, no. 1, pp. 36-47, Feb. 1994.

[3] Bhatia A.. (2008, January'). “Complex Event Processing” [Online].
Available:
http://it.toolbox.com/wiki/index.php?title=Complex_Event_Processing
&o!did=45313. [Accessed: Mar. 31,2010].

[4] Chatterji G. B., Soni T., Sridar B., "Aggregate flow model for air-
traffic management ". Journal of Guidance, Control, and Dynamics,
29(4):992-997, 2006.

[5] McReynoIds S., “Complex Event Processing in the Real World”, 2007.
Available: http://www.oracle.com/us/technoIogies/soa/oracle-complcx-
event-processing-06642I.pdf. [Accessed: Jun.28.2010]

[6] “Visual Analysis of Real-time Streaming data and Complex Event
Processing (CEP) data”, Available:
http://www.panopticon.com/products/cep_complex_event_processing_
real_time_visual_data_analytics.htm.[Accessed: Jun.28.2010].

[7] Lakshmanan G.T., Rabinovich Y.G. and Etzion O., "A Stratified
Approach for Supporting High Throughput Event Processing
Applications," in The 3rd ACM International Conference on
Distributed Event-Based Systems, 6-9 July, 2009, Nashville.

[8] Biger A., Etzion O. and Rabinovich, Y. "Stratified implementation of
event processing network," in The 2nd International Conference on
Distributed Event-Based Systems, 1-4 July, 2008, Rome.

[9] Jones S. P., “Beautiful concurrency”, Microsoft Research, Cambridge,
Mayl, 2007.

110] Harris T., Marlow S., Jones S. M., Herlihy M., “Composable Memory
Transactions”, Microsoft Research, Cambridge, August 18, 2006.

[11] Herlihy M., Sun Y., “Distributed Transactional Memory for Metric-
Space Networks.”.

112] Romano P., Carvalho N., Rodrigues L., "Towards Distributed
Software Transactional Memory Systems ”.

Overview of RMI Applications (The
Tutorials>RMI).”[Onlinc].AvaiIable:http://java.sun.com/docs/books/tu
torial/rmi/overview'.html. [Accessed: April. 11, 2010],

[14] Morin S., Koren I., Krishna C. M., "JMPI: Implementing the Message
Passing Standard in Java," ipdps, vol. 2, pp.0118b, International
Parallel and Distributed Processing Symposium: IPDPS 2002
Workshops, 2002.

115] Ncster, C., Philippsen, M., Haumacher, B. ”A More
Efficient RMI for Java," JavaGrande99, pgs. 152-159.

[16] Vinoski S., (2003.February). “Service Discovery 101”[Online].
Available: http://stcvc.vinoski.net/pdf/lEEE-
Servicc_Discovery_l01.pdf. [Accessed: April. 24,2010]

[13] “An Java™

126

http://www.jini.org/wiki/Main_Page
http://portal.acm.org/citation.cfm7id31131322.1131340
http://www.epzilla.nei/
http://www.computing.dcu.ie/~kpodesta/distributed/
http://it.toolbox.com/wiki/index.php?title=Complex_Event_Processing
http://www.oracle.com/us/technoIogies/soa/oracle-complcx-event-processing-06642I.pdf
http://www.oracle.com/us/technoIogies/soa/oracle-complcx-event-processing-06642I.pdf
http://www.panopticon.com/products/cep_complex_event_processing_
http://java.sun.com/docs/books/tu
http://stcvc.vinoski.net/pdf/lEEE-

appendix I: System Architecture

Nl Ni 5

I 3

Nl Nl STM
STM

*S--iWr i>

2 4

I------ I
Event

Dispatcher

L_„—J
r*“

iu Accumulator
► . STM Node cluster

•'

r !
■*

I Events
Client f " Event i

Dispatcher $i
l

■

'
Event

1 Dispatcher I
5

itName
Server 3-

NN
2321

N
24

i
t

STM Node cluster

Allow to add new
node clusters lor t

scalability
:

i
r^AlertFeedback to event

127

