
 

Applicability of Agent Technology for Software 

Release Management 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.A.D.A.S. Bogoda 

08/10001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Faculty of Information Technology 

University of Moratuwa 

September 2010



 

Applicability of Agent Technology for Software 

Release Management  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.A.D.A.S. Bogoda 

08/10001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Dissertation submitted to the Faculty of Information Technology,  

University of Moratuwa, Sri Lanka for the partial fulfillment of the  

requirements of the Degree of M.Sc. in Artificial Intelligence 

 

September 2010



 ii 

Declaration 

I declare that this dissertation does not incorporate, without acknowledgment, any 

material previously submitted for a Degree or a Diploma in any University and to the 

best of my knowledge and belief, it does not contain any material previously 

published or written by another person or myself except where due reference is made 

in the text. I also hereby give consent for my dissertation, if accepted, to be made 

available for photocopying and for interlibrary loans, and for the title and summary to 

be made available to outside organization.  

 

 

B.A.D.A.S. Bogoda 

 

Name of Student   Signature of Student  

 

 Date 

 

 

Supervised by 

 

 

Prof. Asoka S. Karunananda 

 

Name of Supervisor(s) Signature of Supervisor(s) 

 

 Date 



 iii 

Dedication 

To My Parents



 iv 

Acknowledgements 

I am heartily thankful to my supervisor, Asoka S. Karunananda, whose 

encouragement, guidance and support form the initial to the final level enabled me to 

develop this solution. 

Lastly, I offer my regards and blessings to all of those who supported me in any 

respect during the completion of the project. 



 v 

Abstract 

Information Technology industry is one of the most widely spreading industry around 

the world in recent past as its applicability and adaptability nature for various streams. 

Influence created by IT industry, on various streams help to accelerate their 

development in large portion with in a short period of time. Because of quick reaction 

in problem solving and easy way of storing and retrieving information people tend to 

replace existing manual systems by computerized systems.  

Enterprise level applications are developed as a combination of several components. 

Modification done in a one component is used to fulfill some functionality of other 

component. When preparing those modification to deliver for the customer it is 

required to know which component‘s modification is highly depend on each other and 

which is not depend on other. Currently this handle by human where developers go 

through the modification and identify which component is highly depending on the 

modification done on other components. Developers need to have good 

communication among each other to identify correct order, the components should 

arrange. Once the order is identified they start compiling and building jar files. This 

process is highly time consuming task as there are frequent updates done for the code 

when fixing issues. This subject to reduce developer‘s effective time he can work. It‘s 

a big burden for the company as well.  

In this thesis it will discuss how to solve above problem by automating the software 

release management process using Multi-agent technology. In the literature review 

chapter it will discuss about different researches conducted related to software release 

management domain. In the design chapter it will give high level picture about the 

design. Then gradually it will explain how agents solve this by communicating with 

each other, under implementation chapter. At the evaluation chapter it discuss how 

implemented solution has been tested and what are the other advantages it can gain by 

overcoming limitations of the existing release management tools. Under conclusion 

chapter it discusses whether each objective has achieved by providing appropriate test 

samples. 



 vi 

Contents 

  Page 

Chapter 1 – Introduction  01 

1. 1 Introduction   01 

1. 2 Background and motivation   01 

1. 3 Aim   02 

1. 4 Objectives   02 

1. 5 Resource Requirements   02 

1. 6 Summary   03 

 

Chapter 2 – Current trends in Software Release Management  04 

 2.1 Introduction   04 

2.2 Waterfall Model   04 

2.2.1 Requirements    05 

2.2.2 Design   05 

2.2.3 Implementation   06 

2.2.4 Verification   06 

2.2.5 Maintenance   07 

2.3 Maintaining software product   07 

2.4 Movements in Software Release Management   08 

2.4.1 Standardized Release Management System  08 

2.4.2 Cost Effective Release Management System  12 

2.4.3 Flexible Release Management Systems for Component Based 

Products   13 

2.5 Summary   16 

 

Chapter 3 – Technology behind in Software Release Management  17 

3. 1 Introduction   17 

3. 2 Technologies already in use   17 

3.2.1 CruiseControl   17 

3.2.2 Maven   19 

3.2.3 Multi Agent Systems Technology   20 

3.2.3.1 Agent Communication   20 



 vii 

3.2.3.2 Ontology   21 

3.2.3.3 Lifecycle of Agent   21 

3. 3 Summary   22 

 

Chapter 4 – Multi Agent approach for Release Management  23 

4. 1 Introduction   23 

4. 2 Proposed Solution   23 

4.2.1 Inputs  23 

 4.2.2 Outputs  23 

 4.2.3 Process  24 

 4.2.4 Users  24 

 4.2.5 Features  24 

4. 3 Functional Specification   24 

4. 4 Summary    25 

 

Chapter 5 – Design of Release Management Tool     26 

5. 1 Introduction   26 

5. 2 Analysis and Design   26 

 5.2.1 Initialization   27 

 5.2.1.1 Retrieving release dates   27 

 5.2.1.2 Setup repository libraries   27 

 5.2.1.3 Handling authentication   27 

 5.2.1.4 Retrieving history data   28 

 5.2.2 JADE Multi Agent System   28 

 5.2.2.1 Agent creation   28 

 5.2.2.2 Update local files    28 

 5.2.2.3 Agent communication   29 

 5.2.2.4 Agent deletion   29 

 5.2.3 Apache Ant Compiler   29 

 5.2.3.1 Invoke ant targets   29 

 5.2.3.2 Building jar files   30 

 5.3 Agent‘s Lifecycle   30 

 5.4 Class Diagram and Activity Diagram   30 

 5.5 Summary   31 



 viii 

Chapter 6 – Implementation   32 

6. 1 Introduction   32 

6. 2 Initialization   32 

 6.2.1 Utility classes   32 

 6.2.2 Retrieving release dates   33 

 6.2.3 Setup repository libraries   33 

 6.2.4 Handling authentication   34 

 6.2.5 Retrieving history data   35 

6. 3 JADE Multi Agent System   35 

 6.3.1 Agent creation   35 

 6.3.2 Update local files   36 

 6.3.3 Agent communication   37 

 6.3.4 Agent deletion   38 

6. 4 Apache Ant Compiler   38 

 6.4.1 Invoke ant targets   39 

 6.4.2 Building jar files   39 

6. 5 Summary   40 

 

Chapter 7 – Evaluation   42 

7. 1 Introduction   42 

7. 2 Evaluating Reduction of Human Interaction    42 

7. 3 Evaluating Reduction of Network Traffic   43 

7. 4 Minimize the time spent on Release Management task  43 

7. 5 Reduce Exceptions occur in Compilation and Build process  43  

7. 6 Optimize CPU memory usage   43 

7. 7 Summary    44 

 

Chapter 8 – Conclusion and Further work   45 

8.1 Introduction   45 

8.2 Conclusion   45 

 8.2.1 Reduce Human Interaction     45 

 8.2.2 Reduce Network traffic      45 

 8.2.3 Minimizing the time spent on release management task 46 



 ix 

 8.2.4 Reduce exceptions occur in compilation and build process 46 

 8.2.5 Optimize CPU memory usage     46 

8.3 Problem Encountered       46 

8.4 Limitation         47 

8.5 Further Works        47 

8.6 Summary         48 

References   49 

Appendix A   52 

Appendix B   57 

Appendix C   58 



 x 

List of Figures 

 Page 

Figure 2.1 – Waterfall Model 04 

Figure 3.1 – Architecture of CruiseControl 18 

Figure 3.2 – Architecture of Multi-agent system 20 

Figure 5.1 – Top Level Architecture of the Proposed Multi Agent System 26 

Figure 5.2 – Lifecycle of the Agent 30 

Figure A.1 – Memory usage in initialization 52 

Figure A.2 – Memory usage after termination 53 

Figure A.3 – Initial state of agent creation 54 

Figure A.4 – Agents‘ communication progress 55 

Figure A.5 – End of agents‘ communication 56 

Figure B.1 – Generated jar files 57 

Figure B.2 – Apache Ant script file 57 

Figure C.1 – Class Diagram 58 

Figure C.2 – Sequence Diagram 59 

 



1 

Chapter 1 

Introduction 

1.1 Introduction 

Information Technology industry is one of the most widely spreading domain around 

the world in recent past. Because of quick reaction in problem solving and easy way 

of storing and retrieving information people tend to replace existing manual systems 

by computerized systems. Once system is computerized it is required to maintain the 

system while it is in production environment. Almost all of the software development 

companies used to maintain software product fully or partially by manually and 

which require more time and human resources. In this chapter it is going to discuss 

about background and motivation factors that influence to have an automated release 

management system in software development domain in order to save time and 

human resources. After discussing background and motivation factors it will discuss 

about aim and objectives with reference to this project. At the end of this chapter it 

will discuss about set of resources which were used to implement this system.  

 

1.2 Background and motivation 

Software development process in Information Technology industry has become one 

of the leading jobs providing area to the world market in recent years. According to 

the Software Marketing Research [16] it earned around $451.8 billion in the year 

2008 in world wide. Not only fast development of software stream provide huge 

number of jobs to the world job market but also it assists considerable growth of areas 

like education, entertainment, healthcare, traveling and banking. It is true that 

contribution of IT industry is highly benefited to each and every area to walk towards 

a new era. In this each area it can see that there are large numbers of enterprise level 

software tools available in different flavors. When using these tools in production 

environment various unknown failures can arise. These failures should identify and 

fix in order to have a quality software tool. Once particular failure is fixed the new 

product should hand over to the customers who are using it. Process of identifying 

failures, fixing them and handover to the customer is known as software release 

management. This process is highly time consuming process and it is currently handle 

by manually with support of software developers. As a result developers have to spent 

considerable amount of their time for release management activities. When there are 



2 

many clients using the product the frequency of identifying new issues will increase. 

Result will be frequent releases through out the week for each and every issue fix. 

This is a huge draw back for the IT companies since valuable time of the software 

developers can not be fully allocated to developing the software product. Result will 

be the reduction of productivity and the motivation factors of the developers. In order 

to improve the productivity and motivation, involvement of developers for release 

management process should minimize. It can only be done by automating the 

software release management process. 

 

1.3 Aim 

Develop a system to automate the software release management process using multi 

agent systems technology.  

 

1.4 Objectives 

 Reduce human interaction in release management process 

 Reduce network traffic  

 Minimize the time spent on release management task 

 Reduce exceptions occur in compilation and build process 

 Optimize CPU memory usage. 

1.5 Resource Requirements 

In this section it will give description about the software it used to develop the 

solution. As this is very much based on software tool no special hardware is required. 

Develop the system to run on Windows XP operating system. Java Development 

Toolkit [12] (JDK Version: 1.6) was used as the programming language to develop 

the system. For source repository management it used TortoiseSVN [20] (Version: 

1.5.9). SVNKIT [15] (Version: 1.3.0) used as the communication bridge between 

TortoiseSVN and Java programming language. SVNKIT used as the communication 

bridge as SVNKIT support to execute almost all TortoiseSVN commands using Java 

programming language. JADE Toolkit [10] (Version: 3.6.1) used as the agent 

development tool kit which is also developed by using Java programming language. 

To compile the Java source code and build jar files it use the Apache Ant [2] tool as it 

is highly configurable and support for commands used in Java programming 

language. Eclipse IDE [6] (Version: 3.4.2) used to develop Java code for this system. 



3 

1.6 Summary 

In this chapter it was discussed about surrounding areas of the software development 

process in IT industry. Further more it has discussed importance of the problem it is 

going to address in line with the rapidly growing IT industry. Consequently it has 

pointed out aim and objectives of this project with respect to software development 

domain. As the end it has provided set of software tools and their versions which 

were used to develop this system.  

Rest of the document arranged as follows. In the second chapter it will discuss about 

each steps in waterfall model and set of researches conducted on software release 

management domain. In the third chapter it will discuss about technology behind in 

software release management. In the fourth chapter it will discuss about multi agent 

approach for software release management. In the fifth chapter it will discuss about 

the design of the proposed solution. In the sixth chapter it will discuss about 

implementation of the solution by giving appropriate example of the source codes. 

Under seventh chapter it will discuss on evaluation of the developed system and in 

the eighth chapter it will discuss about conclusion and further works with reference to 

this project. 



4 

Chapter 2 

Current trends in Software Release Management 

2.1 Introduction 

In the previous chapter it has discussed about one of the major problems face by 

developers in the software development process when maintaining the software 

product. Also it has discussed about aim and objectives it is going to achieve by doing 

this project. At the beginning of this chapter it is going to discuss about major stages 

in software development process by considering the waterfall model. After that it will 

discuss about different researches conducted on software release management domain 

under three main categories.  

 

2.2 Waterfall Model 

The waterfall model is a sequential software development process, in which progress 

is seen as a waterfall through the phases of Requirement Analysis, Design, 

Implementation, Verification and Maintenance. It is known as waterfall model, as its 

progress flow from the top to the bottom like a waterfall. This model was originated 

from the manufacturing and construction industries as there was no formal software 

development methodology exists at the beginning. Simplest form of the waterfall 

model is shown in Figure 2.1. 

 

Figure 2.1: Waterfall Model 

 



5 

As it shown in the Figure 2.1 the waterfall model proceeds from one phase to next in 

a sequential manner from top to bottom, once particular phase is fully completed. 

Detail of the each phase and its functionality describe separately as follows, 

 

2.2.1 Requirements 

Requirement analysis is the initial stage of the waterfall model as shown in the above 

Figure 2.1. One of the major out come of this phase is the requirement specification 

document. Requirement specification is a well stranded document which normally 

calls as Software Requirement Specification (SRS). This document contains the 

complete description of the behavior of a system to be developed. It includes a set of 

use cases that describe all the interactions the users will have with the software. Use 

cases are also known as functional requirements. In addition to use cases, the SRS 

also contains non-functional requirements. Non-functional requirements are 

requirements which impose constraints on the design or implementation such as 

performance engineering requirements, quality standards, or design constraints. Once 

it sign-off it can not be modify throughout the life cycle. 

 

2.2.2 Design 

Software design is a process of problem-solving and planning for a software solution. 

After the purpose and specifications of software are finalized, software developers 

start designing a plan for a solution. It includes low-level component and algorithm 

implementation issues as well as the architectural view. If the software is semi 

automated or user centered, software design may involve user experience design 

yielding a story board to help determine those specifications. If the software is 

completely automated, a software design may be as simple as a flow chart or text 

describing a planned sequence of events. There are also semi-standard methods like 

Unified Modeling Language and Fundamental modeling concepts. In either case 

some documentation of the plan is usually the product of the design. Software design 

documentation may be reviewed or presented to allow constraints, specifications and 

even requirements to be adjusted prior to programming. Redesign may occur after 

review of a programmed simulation or prototype. It is possible to design software in 

the process of programming, without a plan or requirement analysis, but for more 

complex projects this would not be considered a professional approach. A software 

designer or architect may identify a design problem which has been solved by others 



6 

before. A template or pattern describing a solution to a common problem is known as 

a design pattern. The reuse of such patterns can speed up the software development 

process, having been tested and proved in the past. 

 

2.2.3 Implementation 

Once design of the system is done then developers are starting to implement the 

requested system step by step. In computer science, an implementation is a realization 

of a technical specification or algorithm as a program, software component, or other 

computer system through programming and deployment. Many implementations may 

exist for a given specification or standard. For example, web browsers contain 

implementations of World Wide Web Consortium-recommended specifications, and 

software development tools contain implementations of programming languages. 

Software Implementations involve several professionals that are relatively new to the 

knowledge based economy such as Business Analysts, Technical Analysts, Solutions 

Architect, and Project Managers. Once the implementation is done the flow will move 

to verification stage. 

 

2.2.4 Verification 

Once the system is implemented that should be verify. As there is a special team to 

develop the system, there is a special team to do the verification as well. They knew 

as quality assurance team. They are supposed to test the quality of the software which 

is developed by the development team. When testing the system it required to test 

whether requirement specified in the requirement specification is met. It is normally 

known as functional testing. In the quality assurance domain there are different kinds 

of testing strategies they follow in order to make sure that developed system is 

working on a particular standard. If the developed system is not working as expected 

or it deviate from the content included in the requirement specification, quality 

assurance will report an issue for that. Development team need to go thorough those 

issues and should implement a solution for that. When number of issue count get 

reduces and if system is in acceptable state the implemented system will handover to 

maintenance team. 



7 

2.2.5 Maintenance 

Maintenance stage the implemented system will be fine tuned. Functionality miss 

matches, performance problems, new modification, new features are identified and 

re-implement them again. Actual implemented system will be handover to the 

customer with in this stage. It is well-known thing that unexpected issues are 

identified when the system is running on production environment opposed to the local 

environment. This can happen as in customer environments they are using different 

versions of the tools with different way data base configurations. Even performance 

issues can arise as too many users are using the system at the same time in real 

environment. In internal test environment these kinds of issues are rarely identified as 

small numbers of users are used to test the system. In addition to customer reported 

issues local quality assurance team also will identify issues which are not yet 

identified by customers. When any particular serious issue is identified by the 

customer or local quality assurance team it should be fixed immediately as it will be a 

black mark for the system. Some customers may reject to use the system if system 

contains lot of serious issues. Therefore once that kind of issue happen developers in 

the maintenance team should get immediate action on it. 

 

2.3 Maintaining software product 

Even though waterfall model is one of the oldest software development model it 

contains same set of phases available in the other development models such as V-

model, Spiral model, Incremental model. In general those models are extended 

models of waterfall model. Currently different software development companies are 

using their own customized version of software development process according to 

their requirements. What ever the model they use at the end of this each model it will 

end up with a developed system which intended to use by a customer. Once it 

handover to the customer maintaining the software with good quality and in high 

performance is an essential factor in any model to keep the relationship between 

client and the company. As discussed earlier when maintaining the software product 

it is required to do continuous releases for every improvement or modification done 

to the code base. Therefore it is true that software release management is essential 

activity in any kind of software development model when maintaining a software 

product.  

 



8 

2.4 Movements in Software Release Management 

Under software release management domain author has gone through several 

researches conducted by different universities and institutes around the world. In this 

section it is going present those researches under three main categories as 

Standardized Release Management System, Cost Effective Release Management 

System, and Flexible Release Management Systems for Component Based Products. 

 

2.4.1 Standardized Release Management System 

Martin Michlmayr who is a member of Technology Management center in University 

of Cambridge UK conduct a research with the idea of identifying problems with 

current release practices, verifying possible advantages of an increasingly popular 

release model and developing interventions to improve release management in free 

software projects [11]. In his research researcher has focus to conduct the research 

based on free software and open source projects. As he mention in his research, 

release management process identified as problematic area for open source 

developers where volunteers are continually modify the code in an unpredictable 

fashion. According to the author release management in distributed domain often 

associated with problems, as programmers who maintain software projects do not 

have management and coordination skills since they are basically capable on 

developing the code according to the requirements. Essentiality of extra commitment 

from project participants during a release to meet deadlines also become a problem as 

volunteers are not agree to put more effort on release management in their working 

hours. Finally, mismatch between the requirements of users and developers become a 

problem since developers mainly use development releases, where they might not see 

the need for well tested and stable releases aimed at less technical and corporate 

users. 

On the existence of above problems release management standard can reduce the 

quality of it. As mentioned in the research low quality standard of release 

management can lead to number of problems such as software which is out of date, 

breaks compatibility, or does not meet the quality standards or the requirements of 

users. In this research researcher has interviewed twenty experienced free software 

and open source developers from variety of projects, release strategies and processes, 

along with number of problems with current release cycles. Those interviews were 

base on two major release strategies as time based release and feature based release. 



9 

In time based releases, it follows a clear schedule and release is made according to a 

fix time plan. In feature based releases, releases are done according to completion of 

certain features in the product. Time-based releases are particularly suited for large 

and modular projects because they allow individual developers to independently 

follow the schedule which has been set. This will reduce the amount of coordination 

required. Since developers know when their features must be ready on time 

possibility to have steady releases becomes high in time-based release. Because of the 

predictability, development of the system leads to more features and better code. 

 

Five members of the Utrecht University conduct a literature study about software 

product management process in IT industry with the idea of developing a reference 

framework [22] avoiding the limitation of existing product management practices. As 

mentioned by the researchers the role of product manager has emerged over the last 

years and appears to be of strategic value, but complex one to execute as product 

manager is responsible for managing requirements, defining releases, and defining 

products in a context where many internal and external stakeholders are involved. 

According to them software product management did not have proper attention since 

the industrial revolution in the 19
th

 century. Only relatively recently it has received 

attention in product software companies like Microsoft and Alcatel. In their research 

they have mentioned about some of the existing tools like ReleasePlanner, ReqSimile 

which are currently using in the software release management domain. But those 

tools are very much focus on release planning and delivery management. There are 

more areas yet not supported by those tools. 

 

Hyrum K. Wright who is a member of Department of Electrical and Computer 

Engineering in University of Texas at Austin conduct a research with the idea of 

modeling and quantifying existing release processes and an effort to prescribe 

improvements to those processes [9]. According to the research software release is 

the most prominent aspect of a software deployment [18]. This is common for web 

service, an open source project, a commercial system, or internally developed 

application. According to researcher success of a quality software is depend on 

successful release process. Therefore development teams must guarantee that they 

have a satisfactory high quality release process to create low fault and high frequency 

releases. As mentioned in the article while developers and architects focus their 



10 

engines on the design of the software, release process also should start gradually 

design its release plan. As Researcher claims that because of the ubiquitous nature of 

the release process in the software development cycle, very little amount of 

researches were conducted on the release process area. As a result of that no 

significant improvements can be seen in tools and processes which are used in 

software release management area. In this research researchers are trying to define 

very flexible, common and useful process which can be use by different 

organizations, although these every organization has their own art of release 

management process. By investigating the previous researches conducted on similar 

domain for open source software, researchers are trying to expand their work further. 

At the moment they are working on crating a uniform database to keep release 

information for a variety of open source projects. In this process researches are 

planning to create rough methods of normalizing release information to allow inter-

project comparison. In addition to that they are planning develop tools to support the 

maintenance and improvement of the collected data. This data is used to return 

prescribe improvements to the projects‘ release process with help of their proposed 

model and metrics. They are also plan to study current tooling infrastructure with 

relevant to release engineering and define a common standardize tool infrastructure to 

improve and streamline the release engineering process. As researchers mention in 

their ‗conclusion‘ section, release engineering for most teams are ad hoc and 

homegrown over the past few years. Further they added that tools support for this 

domain is often hit-or-miss. 

 

Kim Pries and Jon Quigley who works at product development training and cost 

improvement firm conduct a research with the idea of identifying, whether sound 

configuration management is fundamental to deliver a capable product [14]. As they 

claim an optimally running configuration management program reduces fault reports 

and makes testing easier, whereas incompatible system components subject to end up 

with more failures and much work wasted. The impact of good configuration 

management becomes even more meaningful if the product under test is actually a 

single system or a collection of components. It does not matter how well developers 

designed the product if they are unable to manufacture and deliver that design. 

Successful product development, in general, is thus completely dependent on robust 

configuration management. It is useless if we deliver wrong version to the customer 



11 

even we have implement the functionality correctly. In this article they pointed out 

that there are four requirements for any configuration management system which is 

define by Military standard 973 and military handbook 61. Configuration 

identification, Configuration control, Configuration status accounting, Configuration 

auditing are the four requirements. Under Configuration identification it define that 

correct versioning should follow when maintaining the product through out its‘ life 

cycle. Configuration control can consider as part of configuration management in 

which we manage changes to the product. Configuration status accounting also called 

as CSA is used primarily for the reporting feature, although its implication is much 

broader. Under CSA, it record changes, update configurations when items change, 

and issue reports. In Configuration auditing it compares the configuration expected to 

what is delivered. Configuration auditing can also divided in to two parts as physical 

configuration and functional configuration. In physical configuration audit it 

compares existing documents to contracted or required documents, and a functional 

configuration audit it verifies functionality against requirements. After defining about 

those configuration requirements researchers discuss about how software release 

products should manage. They suggest that to manage the complexities of software, 

the configuration management tool should allow branching, merging, developmental 

release numbers, and released product release numbers. In this article they have 

allocate a separate heading call ‗Insufficient Configuration Management‘ which 

describe about side effects by having a bad configuration management system. As 

they describe inability to predict the impact of changes on the project is one of the 

subsequent failure which result to fail the whole configuration management system. 

They argued that it is required to have good configuration management system as 

issues found in configuration management are not easy to identify quickly. That will 

result to waste of both time and resources. Good configuration management system 

result to avoid both time and resources when investigating issues. Duration overruns 

on software and hardware development already impact time available for testing. The 

spending of additional time and resources to solve problems that are not valid is a 

waste and reduces the probability of launching on time and within budget. When the 

end product to the customer is configurable, these problems are transferred on to the 

customer, sometimes with no notice. If the product in question is a high-volume item, 

the issue may not be found until a number of customers have been involved and the 

product delivery pipeline is full of the errant product. As they claim without proper 



12 

configuration management, it is useless to fix the wrong version of the software, 

introducing yet more errors into the product. Finally they suggest that good 

configuration management always leaves a competent audit trail and never is the 

recipient of customer complaints. 

 

2.4.2 Cost Effective Release Management System 

Two members of Information and Computing Sciences Institute in Utrecht University 

conduct a research on finding on cost/value functions for product software vendors to 

support their release package planning method [13]. In this research researchers have 

define ‗software product release management‘ as storing, publication, identification, 

and packaging of the elements of a product. According to researches ‗release package 

planning‘ is a part of the release planning process which defines what features and 

bug fixes are included in a release package. In their research it mention about several 

types of packages that are used in the release process. First one is known as ―update 

package‖ which promotes a customers configuration to a newer configuration. Update 

package basically divided in to three main parts as bug fix update package, feature 

update package, minor and major update package. Bug fix update package is an 

update package which contains only bug fixes where feature update package is an 

update package which contains only new features introduced to the system. Minor 

and major update package is an update package that contains both bug fixes and new 

features. In this research they are discussing the real world scenarios where customer 

make a decision to take new features from the software company or remain in the 

same version depending on the cost they have to allocate for it. They have define two 

major functions by considering customers and vendors as ―customer cost/value 

functions‖ and ―vendor cost/value functions‖ with required equations to calculate 

particular cost.  Researches have provided ten misconceptions that software vendors 

can easily have by considering Dutch software organizations which provide 

occupations for around 1500 people.  At the end of the research paper they have 

discuss about how cost can reduce in vendor side and also in customer side. 

Researches claim that process of ―release package creation must be automated‖ as 

much as possible to eliminate simple manual task. They say that if a release package 

is checked for completeness automatically each time a release package is created, it 

does not need to be checked extensively by quality assurance, eliminating a large part 

of this process. Also they mention that cost of software delivery is greatly minimized 



13 

if ―all delivery is done through a network‖ instead of expensive media like CDs or 

DVDs. Another reason is that releases stored on these media are never as up to date 

as the vendor‘s release package repository. According to researches in the customer 

software development costs can be reduced for the customer by automating the 

update process. This requires the software vendors to seriously invest for an update 

tool and to develop its architecture. These customizations should remain functional 

after an update. Also the vendors should inform about this update to their customers 

in more practical manner using news letters, customer days, and e-mails.  

 

2.4.3 Flexible Release Management Systems for Component Based Products  

Two members from University of California at Irvine and University of Colorado at 

Boulder conduct a research with the idea of defining flexible release management 

process and implementing a built specific tool in the context of distributed 

component-based software development [1]. According to them in the component 

based software development domain, software systems are created by integrating 

independently developed, pre-existing components. These common components are 

developed by various companies located all over the world. Continuously they make 

improvements to their components and release new versions. As they mentioned in 

their research, heart of the software release management is the notion of dependence. 

In order to proper functioning of a particular component rest of other dependent 

component should be up-to-date. According to researches understanding a 

component‘s dependencies is complicated by the fact that components may be 

developed by different organizations, that those organizations autonomously control 

the release of new versions of their components, that each version of a component 

may have different dependencies, and that dependent components may themselves be 

complex component-based systems. Therefore researches claim that documenting 

dependencies accurately and then using the documentation to both drive and constrain 

software release management, is critical for supporting developers and users of 

component-based software. As a solution they introduce their Software Release 

Manager (SRM) tool in their research based on two key notations. First one is while 

components can be released from physically separate sites; the actual location of each 

component is transparent to those using the SRM. Second one is dependencies among 

components are explicitly recorded so that they can be understood and exploited by 

the tool and its users. From their tool they help developers automatically document 



14 

and track transitive dependencies. They develop this tool with the assumption of 

while SRM is responsible for storing and reasoning over dependencies, it itself is not 

responsible for generating or otherwise deriving the dependencies. Instead, when a 

developer releases a component, they are expected to specify the dependencies of that 

component. As they mention SRM tool is focused specifically on the activities that 

take place between the time when components are developed and when they are 

installed. SRM intentionally does not support traditional configuration management 

of source code, nor does it support the installation, configuration, activation, or run-

time reconfiguration of a component-based application. As researches suggest 

instead, SRM forms a bridge from the organizations where components are authored 

and released, to the organizations where the components are assembled into an 

application. In this research they have implement SRM tool as a web base 

application. In their tool they keep central data base to store update versions and 

provide graphical user interface to show the dependencies among the different 

component as a diagram. 

 

Gerco Ballintijn who is a member of Centrum voor Wiskunde en Informatica in 

Amsterdam conduct a research on release management by selecting a health-care 

information system developed by the Dutch software vendor ChipSoft [8]. In this 

research he has interview different customers who are using this particular health-care 

information system and identified that almost all customers require their own version 

of the application. According to his research these applications frequently consist of 

many components that depend on each other. Researcher claims that the components 

evolve over time to answer the changing needs of customers. Consequently, releasing 

these applications takes a significant amount of effort and is frequently error-prone. 

In their existing system they are using Intelligent Software Knowledge Base (ISKB) 

which stores information about all the artifacts that are part of an application‘s life 

cycle. As different customers require different version of application they keep local 

software knowledge base for each customer. And all those local software knowledge 

bases are linked to central knowledge base through internet. According to researcher 

in versioning ChipSoft uses Microsoft‘s Visual SourceSafe (VSS). In its source code 

repositories, ChipSoft uses mostly a file locking policy.  As they mention locking 

source files is not perceived as a bottleneck since the development work is distributed 

over the developers in disjoint subsets. 



15 

 

Tijs van der Storm who is a member of Centrum voor Wiskunde en Informatica in 

Amsterdam conduct a research with the idea of automating release and delivery of 

software updates in the context of component based systems [19]. By doing this 

implementation researchers plan to deliver particular fix or the feature quickly to the 

customers. Normally software vendors are interested in delivering bug-free software 

to their customers as soon as possible. Most challenging problem is that how to 

deliver updates in component based faction, to the customers as they should get only 

features what they require. Researchers are going to present and analyze a technique 

to automatically produce updates for component-based systems from the knowledge 

extracted from build and testing processes. Updates are produced on a per-component 

basis. They contain fine-grained bills of materials, recording version information and 

dependency information. Users are free to choose whether they accept an upgrade or 

not within the bounds of consistency. They can be up-to-date at any time without 

additional overhead from development. Component-based releasing presumes that a 

component can be released only if its dependencies are released [21]. Often, the 

version number of a released component and its dependencies are specified in some 

file. If a component is released, the declaration of its version number is updated, as 

well as the declaration of its dependencies, since such dependencies always refer to 

released components as well. This makes component-based releasing a recursive 

process. As mentioned by researchers it is a significant cost associated with this way 

of releasing. The more often a dependent component is released, the more often 

components depending on it should be released to take advantage of the additional 

quality of functionality contained in it. Furthermore, on every release of a 

dependency, all components that use it should be integration tested with it, before 

they can be released themselves. As a solution for this researchers suggest in practice 

the tendency is to not release components in a component-based way, but instead 

release all components at once when the largest composition is scheduled to be 

released. So instead of releasing each component independently, as suggested by the 

independent evolution history of each component, there implicitly exists a practice of 

big-bang releasing. In their solution it uses version control system which is polled 

changes done by the continuous release system. Every time there is a change, it builds 

and tests the components that are affected by the change. Every component revision 

that passes integration is released. Its version is simply its revision number in the 



16 

version control system. The dependencies of a released component are also released 

revisions. The system explicitly keeps track of against which revisions of its declared 

dependencies it passed the integration. This knowledge is stored in a release 

knowledge base. When handling updates researchers suggest that, they are using 

revision identifiers while existing package development system like NIX [5] use 

cryptographic hashes to identify state of the component which is more aggressive 

than their approach. 

 

2.5 Summary 

Under this chapter author has discussed detail about the each and every phase defines 

in the waterfall model as a common template for software development models. And 

it was proven why it is important to pay more attention on release management 

process by considering the similarities in other available software development 

models. Subsequently it has discussed about several researches conduct on software 

release management domain by breaking them in to three different sections. By 

critically reviewing above researches author has identified existing problems in 

software release management domain and what are the actions researchers have been 

taken to over come this. In several researches, researchers claim that the less number 

of researches conducted in release management area result to have less improvement 

in this domain over the past few years. Also they have mentioned that the time has 

arrived to pay more attention on software release management process because of 

rapidly growing IT industry. In addition to that following are some key points author 

has identified form those researches. Absence of the proper release management 

standard, dependencies among component based systems are complex and difficult to 

handle, continuous releases take significant amount of efforts in terms of t ime and 

resources. Among these issues author has identified that spending considerable time 

and resources on release process is becoming a vital problem in software 

development process over several years. 



17 

Chapter 3 

Technology behind in Software Release Management 

3.1 Introduction 

In the previous chapter it has discussed in detail about waterfall model which was 

commonly used as software development process over the years. Subsequently it 

discussed about different kind of researches conducted in software release 

management domain under three main topics. Under that it has discussed different 

approaches, technologies they have taken and their limitations. In this chapter it is 

going to discuss about existing tools and technologies available for software release 

management with their advantages and disadvantages. At the end of this chapter it 

will discuss about suitability of using multi agent technology for software release 

management automation. 

  

3.2 Technologies already in use 

In this section it is going to discuss about various tools available in the software 

release management domain which are currently used by different software 

companies. Under each heading it will be describing the some specific features those 

tools are having over the other tools. In addition to that it is going to discuss about the 

Multi-agent systems technology with reference to this problem identified in software 

release management process. It also critically reviews the specific characteristics of 

Multi-agent technology over the other conventional software tools available in the 

software release management domain.  

 

3.2.1 CruiseControl 

CruiseControl [4] is one of the leading software tool available in software release 

management locale that can be use to simplify release process. It is both a continuous 

integration tool and an extensible framework for creating a custom continuous build 

process. It includes dozens of plug-ins for a variety of source controls, build 

technologies, and notifications schemes including email and instant messaging. A 

web interface provides details of the current and previous builds in CruiseControl. 

CruiseControl is written in Java but is used on a wide variety of projects.  

CruiseControl is available for download in three distributions as binary distribution, 

windows installer and source distribution. Binary distribution is a zip file containing 



18 

CruiseControl with a sample project which is prepared for run. This considers as the 

most popular distribution and recommended starting point when using the 

CruiseControl for the first time. Windows installer has the same content as the binary 

distribution, additionally which add a service to the windows service. In source 

distribution it contains number of contributed elements that aren't part of the 

precompiled distributions. These include the distributed builder, plug-ins that requires 

external libraries. 

CruiseControl is composed with three main modules as build loop, jsp reporting and 

the dashboard. The build loop is the core of the system which triggers build cycles 

and notifies to various users by various publishing techniques. Configured xml file is 

used to map these build cycles to various tasks and depending on the configuration it 

may produce build artifacts. The jsp reporting application allows the user to browse 

the results of the builds and access the artifacts. The dashboard, which is a web 

interface that provides a visual presentation of all project build statuses. Architecture 

diagram for CruiseControl is as shown in Figure 3.1 below. 

 

Figure 3.1: Architecture of CruiseControl 

 

In order to work ‗CruiseControl‘ correctly it require build tool like ‗Apache ant‘ and 

version controlling system like TortoiseSVN. Currently it available various types of 

plug-in which can simply integrate to ‗CruiseControl‘ and customize its functionality 

according to the requirement. It is one of the key points for ‗CruiseControl‘ to be 

popular among software industry. Release completion e-mail alert service, copping 

required files to customized locations, meaning full log messaging functionality are 

some of the additional features that subject to improve its popularity. But it is 



19 

required human interaction to identify dependency among projects. As upon the 

modification done to the projects dependency can change. So it can not be a fixed 

value. It should adjust according the particular modification. 

As ‗CruiseControl‘ is conventional software it is not possible to expect that it will 

behave according to the dynamic situation. When it request to compile and build the 

project it blindly execute the instructions what are given. If it forgets to give updated 

version of a project, it will continue with available previous version and at some point 

build process get fail. Then person who is responsible should look at the error given 

by the ‗CruiseControl‘ and should take necessary action for it. Sometime he may need 

to update depend properties and do the release from the beginning. Another downside 

of ‗CruiseControl‘ is that it does not have the intelligence to identify in which order 

projects should be built. In practical scenario this is done by manually. Responsible 

developer will communicate with other parties in other projects and come in to an 

agreement in which order they have to build their projects. On the other hand when 

printing the error message ‗CruiseControl‘ use the web console. This error message 

can not be read and understand by a machine. To understand what is the error is 

human interaction is required.  Sometime the error what is showing in the console is 

not the actual error. At particular situation human experience is essential to identify 

what actually it means. 

 

3.2.2 Maven 

Maven [3] is also another popular release management tool which has some advanced 

features over ‗CruiseControl‘.  As oppose to ‗CruiseControl‘ ‗Maven‘ is capable to 

figure out the latest release version from the common location. ‗Maven‘ has 

additional feature as opposed to ‗CruiseControl‘ where ‗Maven‘ is capable of 

working with multiple repositories. Using ‗Maven‘ it can define global repository 

location which resides over in different location other than local repository. Most 

probably this can be web URL. Developer who execute the release is supposed to 

update a property with the information what is the latest version other developers 

have to use when compiling their projects. Once ‗Maven‘ starts the building process it 

will retrieve latest .jar file from the common location. But ‗Maven‘ tool also unable to 

find the dependency among projects when they are in compilation [17] and building. 

In the middle of the process ‗Maven‘ also get fail and some kind of human interaction 

is required to get rid from it.  



20 

3.2.3 Multi Agent Systems Technology 

In the Multi-agent systems it contains several agents that work to achieve a common 

goal. These agents are autonomous and decentralized. There is no central control 

location available to handle the behavior of the agents. All the agents are work to 

achieve the common goal by passing messages. Multi-agent systems can be used to 

solve problems which are difficult or impossible to solve by conventional systems. 

Multi-agent systems also referred to as self-organized systems as agents are capable 

of adjust their behavior to comply with current status of the environment. When 

modeling any real word problem using Multi-agent technology it can consider on four 

main aspects as shown in Figure 3.2.  

 

Figure 3.2: Architecture of Multi-agent system 

The message agent and the ontology can be up and running through out the lifecycle 

of the system. Up on the request resources are allocated and once they done those 

resources will be released. In the next subsections it will discuss about agent 

communication, ontology and their lifecycle which are the key areas in Multi-agent 

system technology.  

 

3.2.3.1 Agent Communication 

In Multi-agent systems communication among agents are done by message passing. 

These messages consist with simple texts and simple keywords which can be 

understand by using simple rules. In most cases the intended recipient of the message 

is unknown at the time of sending message from one agent. In rare cases messages 

might send directly from one agent to another. To over come the situation where 

recipient is unknown Multi-agent systems technology suggests to keep common 

message board where the entire agents send their messages to it. As a result of that 



21 

agents can get to know what is happing in the system by going through the messages 

in the common message board. If the context of the message in the message board is 

match with particular agent‘s context it will start to take suitable action on it. In 

addition to that agent will update the common message board by saying that I have 

taken this request for execution. It helps to avoid the processing of same message, by 

another agent. Agents communicate by using a common agreed language and a 

common protocol which helpful to understand by every in the same context. Agent 

Communication Language normally known as ACL is one of the most commonly 

used language which is define by the FIPA [7] organization. 

 

3.2.3.2 Ontology 

Ontology is a formal representation of knowledge as a set of concepts within a 

domain, and the relationships between those concepts. It is used to reason about the 

entities within that domain, and may be used to describe the domain. In general 

ontologies can be any data or knowledge structure such as database, xml file, web 

page or a text file. The concept of ontology is becoming increasingly important factor 

for agent based systems as it can use to define the behavior of the agent. Normally 

ontology comes as complex network. These networks can be modified, updated, 

combine with other ontologies by using different toolkits. As ontologies are accessed 

by different parities it is required to keep them in an understandable format for 

external parties also. In general ontologies can be classified in to two major parts as 

domain ontologies and upper ontologies. Domain ontology models a specific domain, 

or part of the world. It represents the particular meanings of terms as they apply to 

that domain. An upper ontology is a model of the common objects that are generally 

applicable across a wide range of domain ontologies. It employs a core vocabulary 

that contains, the terms, and associated object descriptions, as they are used in 

various, relevant domain sets. 

  

3.2.3.3 Lifecycle of Agent 

In typical Multi-agent systems agents are created up on the request. At the initial 

stage there are no agents in the system. Once the system starts agents are created. 

Agents communicate among each others by message passing and do the appropriate 

action depending on the situation. If particular agent fails some operation in the 

middle of it another agent can start doing the reset of it as all the agents are capable of 



22 

doing any task in the particular domain. In the conventional software this can not be 

achieved as each components of the system are specifically developed to do a specific 

task only. Conventional software tools are developed to work in a sequential manner 

where out put of one task required to continuation of the next task. In conventional 

software if one task get fail then whole system get fail as all the tasks are depend on 

each other. As opposed to that Multi-agent systems are capable of continuing its work 

either one of its agent fail to execute particular task as they are not heavily depend on 

each other. They are only depend with each other with simple rules that are used 

when massage passing. In general terms it can be said that Multi-agent systems are 

capable of working with out any problem in single point of failure while conventional 

systems are not.  

 

3.3 Summary 

Under this chapter it has discussed about most commonly available software tools 

like CruiseControl and Maven. When discussing about those tools it explain about the 

architecture of release management tools by providing diagrams when it is applicable. 

Subsequently it has discussed about advantages and disadvantages of those tools by 

comparing over the other. Also it discuss about the main factor that those tools can 

not support for fully automated system with the way those are currently implemented. 

Finally it discussed about Multi-agent systems technology in detail by considering 

major areas like agent communication, ontology and agent lifecycle. When describing 

agent‘s lifecycle it has discussed why it is possible for agent to work with 

dynamically changing and complex environments. In the next chapter it will discuss 

detail about the approach to implement the system. 



23 

Chapter 4 

Multi Agent Approach for Release Management 

4.1 Introduction 

In previous chapters it has discussed about different technologies currently use in 

software release management process. Also it has identified advantages and 

disadvantages of those tools by comparing with each other. Subsequently it discussed 

about Multi-agent systems technology and its features under three main sub headings. 

In this chapter it is going to propose the approach to automate software release 

process using the Multi-agent base technology mentioned in the previous chapter. 

 

4.2 Proposed Solution 

In this section it is going to discuss about the proposed solution in terms of Input, 

Output, Process, Users and Features.  It will discuss about what are the information 

insert to the system when starting. Then it discusses about the outputs, expected to 

have from that input data. Next it will discuss about the process which are useful to 

convert that given input as outputs which are meaning for the system. Users and some 

highlighted features of the system are discussed in the later part of this chapter. 

 

4.2.1 Inputs 

Date of the previous release and the URL of the repository will be the inputs for the 

system. These values saved in a .properties file and system will read them when 

release process starts. Once release successfully completed system will save that date 

in .properties file and which will be useful when running the system next time. To do 

this it has used Java programming language with the help of toolkit classes given by 

the SVNKIT. Java programming language provides a support to read/write data from 

the file system where SVNKIT is useful to create a link to the SVNRepository.  

 

4.2.2 Outputs 

Set of build .jar files of the modified projects will be the out puts of the system. For 

each project there will be a separate .jar file. When building depends projects 

previously build .jar file is used by following project to generate its .jar file. When 

generating .jar files sequence they are building is important. To finalize the order they 

have to build, it uses the JADE tool kit which is developed by using Java 



24 

programming language. To execute build instruction commands programmatically it 

use Apache Ant tool which originally develop to support for Java base classes. 

Apache Ant tool is scripting language which writes in .XML format that support 

plenty of Java commands normally executed from command prompt. 

 

4.2.3 Process 

When user initiates the system it will read the last release date and repository URL 

which is saved in .properties file. Then it will connect to repository and fetch all the 

changed projects from that specified date to today‘s date. Separate agent will be 

created to each modified project. Those agents will communicate and come to an 

agreement in which sequence they have to build. Once it finalize respective project 

will generate .jar file according to the agreed sequence. In the process section it uses 

Java programming language to initiate the application. Creation of different agent is 

done through JADE toolkit with the support from Java programming language. Each 

agent will execute Apache Ant build scripts to compile and build .jar files. 

 

4.2.4 Users 

Users for this system can be software developers who are responsible on release 

process. Administrators or Team leads also can consider as users of this system. 

 

4.2.5 Features 

By considering with existing release management tools this application is developed 

to work with out any human interaction. Changed modules and sequence they have to 

build is identified by the application itself. To do that features in the agent technology 

was useful. This system can be used to reduce the usage of network bandwidth as it 

sends one single request to the resource repository. While in the existing system each 

person in the project sends a request to the resource repository. That will lead to have 

high network bandwidth problems. Performance of this application will be more with 

compared to existing tools as in existing tools they checkout large number of files 

from the repository while in new solution it only checkout the modified files. 

 

4.3 Functional Specification 

 Once system started there should be Graphical User Interface which gives 

some idea about the progress of the system to the end user. 



25 

 System should continue if there are modified files exists to compile and 

build only. 

 If no files are modified with the time duration system should terminate by 

giving meaningful message to the end user. 

 Agents should create up-on the request and details of the created agent 

should show to the end users. 

 Once agent created small dialog should display with communication 

message details. 

 Once agents‘ assigned task are done agent should terminate by giving 

meaningful message to the end user. 

 Each message pass between different agents publish on message board and 

agent itself, which will be helpful for the user to identify progress of the 

system. 

 Modified files should only check out to the local machine from the remote 

repository. 

 There should be progress message in the message board after each 

communication happens in between agents. That help user to keep track 

how dependency modified after each message passing. 

 Compile and build the jar files should generate with the name of the 

particular module, which is helpful to identify correct .jar file for the 

specific project.  

 

4.4 Summary  

In this chapter it has discussed about the proposed solution in terms of Inputs, 

Outputs, Processes, Users and Features. When discussing about Inputs, Outputs, 

Processes it has also provide the relevant software tools it is intended to use when 

implementing the system. Also it discuss about key functional specifications are 

expected to have for this system. In the next chapter it is going to discuss about 

analysis and design part to the Software Release Management tool. 



26 

Chapter 5 

Design of Release Management Tool 

5.1 Introduction 

In the previous chapter it discussed about set of Inputs, Outputs, Process, Users and 

Features by providing detail information about the tools it is going to use. In addition 

to that it has provided list of functional specifications which supposed to have when 

implementing this system. In this chapter it is going to give top level design diagrams 

with set of modules and describe how each module work. By taking the particular 

design diagram in to considering it will discuss about how overall system work with 

the collaboration of each other.    

 

5.2 Analysis and Design 

In this section it is going to describe about the key information author has gathered by 

analyzing the system and the design it come up with. In the existing process there can 

be two or more release per week. In this each release only modified modules will 

build and release to the customer. If there are dependency exists among the modules 

responsible person will communicate with other parties and identify suitable release 

order. There can be scenarios where developer blindly starts the release process with 

out considering about other parties. When release get fail at the middle of the process 

they identify that there is a dependency need to update. Then it has to start from the 

beginning. By analyzing existing system author has design a solution as shown in 

Figure 5.1.  

 

Figure 5.1: Top Level Architecture of the Proposed Multi Agent System 



27 

5.2.1 Initialization 

In the initialization stage system will gather all relevant information to create agents 

in the next stage. In the initialization system will read the last release date and SVN 

repository URL from .properties file and retrieve the history data from the repository. 

This history data contains the file path user has change, comment which is added 

when committing the modification, version of the revision and the person who done 

the change. Set of major operations happen in initialization can be categorized as 

follows. 

 

5.2.1.1 Retrieving release dates 

When retrieving release date it is required to have two values. One is the last release 

date and the other one is current date. It is design to store last release date once the 

particular release successfully executed. This will save as in a property file. When it 

is requested by giving the key of that value system will go thorough the file system 

and return the saved value in the property file.  

 

5.2.1.2 Setup repository libraries 

When dealing with SVN repository it is required to have initialized different 

protocols available. Most commonly available protocols are Hyper Text Transfer 

Protocol, subversion repository factory protocol and file system protocol. In order to 

communicate with SVN repository these protocol libraries should be setup by the 

system. Hyper Text Transfer Protocol which commonly known as http is the most 

frequently used and popular protocol among other as it is the protocol for World 

Wide Web accessing. 

 

5.2.1.3 Handling authentication 

When dealing with SVN Repository it is required to have authentication as the 

repository is secured by providing passwords to avoid unauthorized access. SVNKIT 

provide an interface to get authentication from SVN repository by providing set of 

predefined inbuilt classes. In addition to that it provides a support to create SVN 

repository instance by providing the URL it is intended to have with anonymous 

access. Detail of how these design parts are implemented is described in the 

implementation with appropriate source code examples. 



28 

5.2.1.4 Retrieving history data 

In SVN repository version of the data can be retrieved by given the version number or 

the date of the modification. When some one update some information in a file and 

upload to SVN, it will keep the date of the modification, author of the modification, 

version of the modification, detail modification and the comment value inserted by 

the user. With the help of previously retrieved data such as release dates, repository 

protocols and authentication system will identify history data available in the SVN 

repository. 

 

5.2.2 JADE Multi Agent System 

As discussed in the Initialization section as an out put it gives the modified file details 

between last release date and today. Under this heading it is going to discuss the 

design of the multi agent system on several major sub sections.  

5.2.2.1 Agent creation 

Once it identifies modified file information it is required to create separate agent for 

each modified project. When creating agents unique name is used for each agent to 

identify them separately. As only this program is running on the JADE platform it is 

decided to create agents on the default container. Containers provide by the JADE is 

used to perform agents operations. For a single agent there can be only one container 

where it can live. When design the agents features this agent is extend by Agent class 

provided by JADE toolkit. This design of the classes for proposed system is shown in 

Appendix C.1. In the Appendix C.2 it shows sequence of creating agents by operation 

number 7. 

5.2.2.2 Update local files 

Once the system is done with creating agents it is needed to update local machine 

with the latest files from the SVN repository. In this system it design to implement 

that scenario with support provide by the SVNKIT. This system first call to the 

SVNKIT to checkout specified file set from the SVN repository. SVNKIT will 

communicate with SVN repository and execute the operation request by the system. It 

is design to execute this operation once agent creation is done as each agent need to 

get the latest changes from repository in order to compile and build the jar files. In the 

Appendix C.2 it shows sequence of updating local repository by operation number 8, 

9 and 10. 



29 

5.2.2.3 Agent communication 

Under this section JADE toolkit is responsible for handle communication among the 

agents created in previously. As all the agents are in the same container it is easy to 

communicate among agents with simple algorithms. As shown in Appendix C.2 once 

the updating of local machine get completed agent start to communicate with each 

other to identify dependency among them. It is a cyclic flow which happens only 

among agent until they found an appropriate solution. 

 

5.2.2.4 Agent deletion 

When creating an agent system will allocate memory space for the agent to perform 

its task. When there are plenty of agents created, collection of the memory allocated 

get increase. Once the agent is done with its work it is better to delete the agent from 

the system as it will help to utilize memory usage. That will result to improve the 

performance of the system. To do this it is design to make use of the inbuilt support 

which is provided by the JADE toolkit. Once system request to delete the particular 

agent JADE will delete the agent and release its used memory as well. 

 

5.2.3 Apache Ant Compiler 

When designing the system it is plan to separate compilation and building jar file 

section from other components as it is required to get support more on Apache ant 

software. On the other hand it is required to have compiling and building support for 

all the agents as all of them have their own responsible project to build. As shown in 

Appendix C.2 compilation and building will execute under operation 12 

(CompileAndBuild) once the operation 11 (CommunicateAndIdentifyBuildOrder) is 

completed. Design can be divided in to two main sub sections as Invoke ant targets 

and Build jar files. 

 

5.2.3.1 Invoke ant targets 

When compile and building the source code it has design to have one default target 

on the build script and invoke rest of the targets from the Java programming language 

itself. By doing so it was able to reduce the coupling between ant script and the 

implementation.  

 



30 

5.2.3.2 Building jar files 

When building jar file it is needed to write a common script for all the projects. 

Otherwise it has to write separate script for each and every project. It is not practical 

and it is difficult to maintain. Some time it is not possible to create separate scripts as 

the numbers of projects are high. 

 

5.3 Agent’s Lifecycle 

When considering design of the agent‘s life cycle in this system agents are created 

upon the request. As it is mentioned in the initialization state system will identify 

what are the modules which are modified during that time period. Number of agents 

is equal to number of projects which were modified. These agents will communicate 

with each other to execute its task. This is done through a message board. Created 

agents will directly link with resources (projects, SVNRepository) and execute its 

task. Status of the agents will update in the message board. When updating the 

message board it is used to define the type for the message. For example if it is just 

information from an agent then the type of the message is information. If it is a 

service requesting by one agent then the type of the message is request. Once 

particular agent‘s task complete it will terminate by it self. In Figure 5.2 life cycle of 

the agent is shown.  

 

 

Figure 5.2: Lifecycle of the Agent 

 

5.4 Class Diagram and Activity Diagram 

Class diagram for the implemented system is shown in Appendix C.1. As this system 

is implemented using JADE toolkit all agent related classes are extended by them. By 

doing so it was easy to reuse the inbuilt features provided by JADE tool for agents. 



31 

As shown in the class diagram StartUp class is the main class which starts the system. 

StartUp class will initiate MessageAgent instance which is a sub class of RMA class. 

RMA is extended from ToolAgent where ToolAgent is extended from Agent class. 

RMA, ToolAgent and Agent classes are built in classes which are provided by JADE 

toolkit which is used to inherit multi agent features. SVNHistory, SVNRepository, 

SVNUpdateClient, SVNReviosion are the key classes that are used to communicate 

with SVNRepository using Java programming language. In addition to that there are 

some ToolKit classes which support to fulfill special functionalities. Sequence 

diagram for the implemented system is shown in Appendix C.2. 

 

5.5 Summary 

In this chapter it has discussed about key modules like initialization, JADE multi 

agent system, Apache ant compiler by considering the top level architecture provided 

to the Multi-agent system. Under initialization section it has discussed design of the 

system to retrieve last successful release date, setting up the repository libraries and 

authentication. Under JADE multi agent system section it has discussed about the 

design by taken in to consideration on agent creation, local file update, agent 

communication and agent deletion. It has provided appropriate appendixes when ever 

possible under each heading. Under Apache ant compiler section it has discussed 

about how author design to invoke ant targets using Java programming language and 

ant build scripts. In addition to that author has discussed about the life cycle of the 

agent which relevant to this implementation. Class diagram and Sequence diagram for 

the implemented system also included to have better idea about the system 

implementation. In this next chapter it is going to describe how these designs have 

implemented in more technical level. 



32 

Chapter 6 

Implementation 

6.1 Introduction 

In the previous chapter it is presented the top level architecture of the design in a 

graphical representation. Under that chapter it has discussed about detail on each 

component mention in the top level architecture diagram. Subsequently it has 

discussed about lifecycle of the agents with relevant to this solution. In addition to 

that it is presented the design of the Class and Sequence diagrams in a different 

subsection by providing some brief description about each class available in the class 

diagram. In this chapter it is going to discuss how each module which is mentioned in 

the design chapter is implemented in a detail manner by providing appropriate source 

code examples.   

 

6.2 Initialization  

In the initialization stage system will gather all relevant information to create agents 

in the next stage. Under this stage it will create SVN repository instance with 

appropriate authentication and protocols. Finally it collects all the log information 

which is required in the provided time period. Details of each of those functionalities 

are discussed in the following sub sections with appropriate source code examples. 

 

6.2.1 Utility classes 

When implementing this system it was required to perform common operations in the 

source code under different classes. If those operations are implemented in each and 

every location there can be code redundancy occur. Size of the source files get larger 

unexpectedly. Maintainability of the code get reduce as if it need to change some 

behavior of that common operation, have to update it in all the places. Some places 

may neglect and time taken for the operation gets increase as number of locations get 

increase. Debugging the source code get complex and time consuming as different 

places has duplicate codes. Identifying an issue in one place also get difficult as each 

and every location should deeply inspect.   

These utility classes are most commonly useful when handling operations with String, 

DateTime, and Files. Those classes are commonly known as ToolKit class when 

writing the source code. For example when reading a file content by giving the file 



33 

name can be consider as common method as the only thing it change there is the file 

name. This is same for writing to a file. FileToolKit is such a utility class which 

contains set of following methods, 

 

public static String [] readContent(String path)   

public static void writeToFile(String content, String path)  

public static void updateToFile(String key, String content, String 

path)  

public static String getValueByKey(String key, String path)  

public static void deleteFiles(String path)  

 

In the above examples first method is used to read file content by giving the file path, 

second method is used to write to a file by giving the content need to write and the 

file path, third method is used to update the file by giving the key, content and the file 

path, forth method is used to get the specified value contain in the file by giving the 

key and the file path, fifth method is used to delete the set of files and sub folders by 

giving the folder path. In StringToolKit, DateTimeToolKit classes‘ similar kind of 

utility methods were implemented depending on the requirement to handle String and 

DateTime values.   

  

6.2.2 Retrieving release dates 

In this implementation it is require current date and last release date to get 

modification details from the SVN Repository. Information of the last release date is 

saved as a property file at the end of the each success build. FileToolKit utility class 

is used to read that value from the file system as mentioned in the previous section. 

This value is passed to DateTimeToolKit utility class to get a DateTime object which 

can understand by Java programming language. Current datetime also requested by 

using the DateTimeToolKit class by giving the specific format which is supported by 

Java. 

 

6.2.3 Setup repository libraries 

When connecting to the SVN Repository it is required to identify in which protocol 

file modifications are saved. In general there are three different protocols under SVN 

Repository that used to save information of file modifications. The first important and 

most frequently used protocol is about hyper text transfer protocol indicates by http:// 



34 

and https://. This initialization is set up by executing DAVRepositoryFactory.setup(). 

The second protocol is about SVN Repository factory indicate by svn:// and 

svn+xxx://. Initializing this protocol is done by executing 

SVNRepositoryFactoryImpl.setup().  Third protocol is about file system which is 

indicates by file:////. Initializing this protocol is done by executing 

FSRepositoryFactory.setup(). In this implementation as it is keeping local SVN 

repository file system protocol can be used. But when it is dealing with remote 

repository over the internet http or https should be used.  

 

6.2.4 Handling authentication 

When dealing with SVN Repository it is required to have authentication as the 

repository is secured by providing passwords to avoid unauthorized access. To do this 

SVNKIT provide special set of classes, those can call thorough Java. Example code 

for create default authentication manager is as follows, 

 

ISVNAuthenticationManager authManager = SVNWCUtil.CreateDefault 

AuthenticationManager(name,password); 

 

By executing above it request to create a default authentication manager by giving the 

user name and password. In this scenario it provides anonyms user name and 

password as it is connecting to a local repository.  

 

Once it creates the authenticationManger it should be set to the SVNRepository 

instance, system is going to use. Example code for creating SVN Repository instance 

and setting authenticationManger are as follows, 

 

repository = SVNRepositoryFactory.create(SVNURL.ParseURLEncoded(url) 

); 

 

Here it pass SVNURL instance to create() in the SVNRepositoryFactory class to get 

and repository instance for the provided URL.  

repository.setauthenticationManger(authManger); 

By setting the authenticationManger it provide privilege to do any operation with 

SVN Repository.  

  



35 

6.2.5 Retrieving history data 

In this step it is going to retrieve the repository history data with the help of 

previously processed values. Release dates which were identified in previous steps 

using utility classes will be used under this section to get relevant revision numbers. 

In SVNReposiory it keeps version information against the date where it generates 

unique revision number for each update done for the repository. Further it keeps the 

author, names of the files modified and some comment insert by the developer. 

Example code for retrieving startRevision and endRevision values are as follows, 

endRevision = repository.getDatedRevision(this.m_toDate); 

startRevision = repository.getDatedRevision(this.m_fromDate); 

 

In addition to release dates, here it is using the repository which is created in previous 

step by giving default authentication privileges. After system gets this revision 

interval it passes it as follows to get log entries. In the log entries it contains paths of 

the modified projects, person who done the modification, revision number and 

comment user has added. Code example is as follows, 

logEntries = repository.log(new String[] {""}, null, startRevision, 

endRevision, true, true); 

 

As it shows there are six arguments which have to give, to retrieve log entries for the 

given revision period. SVNKIT is return log entries as a collection data set. In that 

data set there can be set of different entries which refers to same file but as different 

log entries. In the processing stage it is only need to know what the files which are 

modified are. Therefore duplicate entries for the same file should be removed. To do 

this StringToolKit utility class is used as it can check equality of the file paths which 

are modified.  

 

6.3 JADE Multi Agent System 

As discussed in the Initialization section as an out put it gives the modified file details 

between last release date and today. In this section it will explain how lifecycle of the 

agent precede with appropriate source code examples.  

 

6.3.1 Agent creation 

In this system agent are created up on the request. If there are no modification found 

no agent will be crated and system will terminate as there is no work to execute. 



36 

Separate agent will be created for each modified module with the details of modified 

files with in that module. Example source code implemented for creation of agent as 

follows, 

 

super.newAgent(modifiedProjectName,"se.agents.util.ModuleAgent",new 

Object[]{entriesList.toArray(new String[entriesList.size()])},””); 

 

In the above code example it passes four arguments to create a new agent instance 

with in the JADE toolkit. As the first argument it passes the name of the agent which 

wants to create. In this implementation it create separate agent for each modified 

project. Therefore system will pass the name of the modified project as the first 

argument. As the second argument it passes the package path of the agent class name. 

This class contains set of inbuilt methods provided by JADE toolkit to handle agent 

behavior. Under those methods it implements the own specific functionalities to be 

aligned with the project requirements. As shown in the class diagram in Appendix 

C.1 ModuleAgent is extended from the Agent class which is provided by JADE 

toolkit. By doing so it will automatically inherit the Agent features to the customized 

ModuleAgent class.  As the third argument it passes the object array which contains 

the information about the modified class names with respect to that modified project. 

As the fourth argument it passes empty String value as the container name where it is 

used to identify in which container, this particular agent needs to create when there 

are multiple containers available. As there is no specific container, JADE toolkit will 

assign those agents to default container. In the JADE toolkit it does not provide any 

support to keep any information about created agents in particular container. As a 

result of that system keep a map data collection to keep information about each 

created agent for this system. 

 

6.3.2 Update local files 

After agent creates each agent start to check out modified files from SVN Repository 

to the local machine. It is required to have same SVN repository instance, created by 

initialization phase to checkout the repository files. As it is keeping static values it is 

possible to retrieve same object in two different stages. Before updating the local files 

it is required to delete all the files which are already exists in the local machine. 

FileToolKit utility method is used to delete all required files by giving the required 



37 

path. Once it is done methods provided by the SVNKIT is used to checkout the 

modified files to local machine. Example source code is as follow, 

 

SVNUpdateClient svnUpdateClient = new SVNUpdateClient( 

authentication Manger, null); 

svnUpdateClient.doCheckout(svnRepository.getLocation(),new File( 

sourceFileDestination), svnFromRevision, svnToRevision, 

SVNDepth.INFINITY,false); 

 

In the above code example it will first create and instance of SVNUpdate client by 

providing the authenticationManger as an argument to the system. SVNUpdateClient 

is inbuilt class which is provided by SVNKIT to handle update operations available in 

TortoiseSVN. After creating the instance it call the doCheckout() with six arguments. 

As the first argument it passes location of the SVN repository which is useful to 

identify the location where repository is. As the second argument it passes an instance 

of File class by giving the path for source file destination. Particular path is used by 

the system to copy source files from the repository. Third and fourth arguments are 

about from and to revision values which is useful to check out modified files with in 

that range. SVNDepth.INFINITY argument is used to say that check out should be 

done up to lowest level in the repository. Once the execution gets success all the 

relevant modules that are modified get updated in local machine. These latest files 

will be used when compiling and building jar files in later stage.  

 

6.3.3 Agent communication 

Once agent check out latest files from the repository they start communicating in 

order to identify dependency among them selves. Example source code for sending 

message from an agent is as follows, 

 

ACLMessage aclmsg = new ACLMessage(ACLMessage.REQUEST); 

aclmsg.addReceiver(agentsAID.get(i)); 

aclmsg.setContentObject(modification); 

this.send(aclmsg); 

 

In the above example it creates an instance of ACLMessage class which is provided 

by the JADE toolkit. When creating the message it define the type of the message as 

it is useful when processing the received message by receiver. Before sending the 



38 

message it assigns who are the receivers of the message and what is the content of the 

message which is going to send. As the final step system sends the message using 

this.send(aclmsg). 

When message passing started each agent will start updating the message board about 

their modified files. Then particular agent (AgentA) who wants to build its project 

will first check what the classes in other projects I am using are. If classes it is using, 

in another project (AgentB) is also modified then AgentA will wait till AgentB‘s 

build complete. Once AgentB completes AgentA will start building its project using 

the build files generated by AgentB. If there are several parties involved on it then all 

of them come in to common agreement by message passing with each other. 

Following code example is useful to execute above mentioned behavior.  

 

Class changedClass = Class.forName(classPath); 

Method [] methods = changedClass.getDeclaredMethods(); 

Field [] fields = changedClass.getDeclaredFields(); 

 

From the above code segment system can identify what are the methods and fields 

contains in a particular class. By identifying fields system can check that this 

particular class is referring to classes in other projects. If so then system checks 

whether particular class in other project also modified. If it is modified then it can say 

that modified project should build before to the other project. But if particular class of 

the other project not modified it can build the project independently. 

 

6.3.4 Agent deletion 

In JADE toolkit it provide special functionality to delete a particular by invoking 

delete(). This method is originally implemented in Agent class which is an inbuilt 

class of JADE toolkit. In this implementation it just calls the available method 

provide by JADE toolkit. Toolkit itself does the reset by deleting the agent and 

releasing its memories. To implement agent specific features it has use JADE tool as 

it contains plenty of support to communicate with agents using Java programming 

language. Another reason to use JADE is that it is FIPA [7] standard tool. 

6.4 Apache Ant Compiler 

After identifying dependency order next task is to compile and generate .jar files. 

This can be easily done by using Apache Ant tool which is fully develop to compile, 



39 

assemble, test and run Java applications. To generate jar files through Java 

programming language it is required to invoke different ant targets. Code 

modification done to invoke ant targets is discussed under ‗Invoke ant targets‘ sub 

section. Script modification done to build jar file discussed under ‗Building jar files‘ 

sub section. 

 

6.4.1 Invoke ant targets 

As this system is developed using Java programming it is also required to invoke ant 

targets using programming language itself. Sample code to invoke ant targets is as 

follows, 

 

Project proj = new Project(); 

proj.init(); 

proj.executeTarget(“clean”); 

proj.executeTarget(proj.getDefaultTarget()); 

proj.executeTarget(“jar”); 

 

In the above example it creates a new project instance from the inbuilt class provided 

by Apache ant. As the first step it initializes the project by calling init(). In order to 

compile and build jar files already saved class files should be removed. It is done by 

executing the proj.executeTarget(―clean‖). After that it will request to run the default 

ant target which is define in the build.xml file. In this scenario default target is 

compiling the source code. When executing that line compilation of source file get 

started. As the last target it will run the proj.executeTarget(―jar‖) where it will 

generate jar files for the compiled classes.  

6.4.2 Building jar files 

In this solution what author has done is executing the build.xml file which is located 

inside each project, programmatically. Sample of the build.xml file as follows, 

 

<target name="clean"> 

        <delete dir="build"/> 

</target> 

 

<target name="compile"> 

      <mkdir dir="build/classes"/> 



40 

      <javac srcdir="SourceCode" destdir="build/classes" 

classpathref="classpath" /> 

</target> 

 

<target name="jar"> 

     <mkdir dir="build/jar"/> 

     <jar destfile="build/jar/${ant.project.name}.jar" 

basedir="build/classes"> 

      <manifest> 

      <attribute name="Main-Class" 

value="se.agents.util.LoadAgent"/> 

</manifest> 

      </jar> 

</target> 

 

Sample of build.xml file is shown in the Appendix B.2. 

In the above example there are three major sectors it can clearly identify. When 

system runs the build.xml file programmatically, it is possible to specify which target 

ant should execute. Code examples are as follows when executing an ant target.  

project.executeTarget("clean"); 

 

By executing above code system request ant tool to execute the instruction given in 

the <target name="clean">. Then it will delete the build directory.  

 

project.executeTarget("compile"); 

By executing above code system request ant tool to create a directory call ―classes‖ 

under build directory. Then compile the java files located in SourceCode folder and 

copy the class files to previously created ―classes‖ under build directory. 

 

project.executeTarget("jar"); 

By executing above code system request ant tool to create a directory call ―jar‖ under 

build directory. Then it will generate .jar file using the compiled class files located 

under build/classes folder. Example of generated jar files is shown in Appendix B.1. 

 

6.5 Summary 

In this chapter it is discussed how each module‘s functionality implemented by 

combining different technologies. Under initialization section it has discussed about 



41 

set of utility classes which were introduced by this implementation. As a common 

example author has taken FileToolKit class with some utility methods implemented 

on it. In the initialization section itself it has discussed how release date is retrieved 

from the file system using Java programming language. Under that section author has 

discussed in detail how authentication and data retrieving is handled by providing 

appropriate source code examples. Under JADE multi-agent system section author 

discussed about agent creation, local file update, agent communication and agent 

deletion in detail manner by providing source code examples. Under Apache ant 

compiler section author have discussed about set of ant script examples which are 

used to compile and build jar files. In the next chapter it is going to discuss about 

evaluation criteria for the implemented system in terms of aim and objectives. 



42 

Chapter 7 

Evaluation  

7.1 Introduction 

In the previous chapter it has discussed detail how system is implemented using 

JADE, SVNKIT, Java, Apache ant, and TortoiseSVN. In the implementation chapter 

it divides the system in to three major sections as Initialization, JADE multi agent 

system and Apache Ant compiler. Under each subsection it discussed how required 

functionalities are implemented by giving appropriate source code examples. In this 

section it is going to evaluate the implemented system by going through each 

objective which has defined in the introduction chapter.  

 

7.2 Evaluate Reduction of Human Interaction 

One of the main objectives of this project is to reduce the human interaction to the 

system at its maximum. As dependency identification is replaced with multi agent 

technology functionality this task has been fulfilled. Now the tool itself can identify 

correct dependency with out human support. This functionality is implemented and 

tested. Evaluate it as follows;  

Create four projects as ProjectA, ProjectB and ProjectC. First user does a 

modification on ProjectA. This modification uses two classes in ProjectC. On the 

other hand user modifies same classes in ProjectC.  As a result of that now ProjectA 

depend on ProjectC. In another word ProjectC should build before ProjectA. Then 

user modifies several classes in ProjectB. These classes are actually use reference to 

set of classes in ProjectA and ProjectC. Then user modifies several classes in 

ProjectA and ProjectC including the classes which are referred by ProjectB. Now 

ProjectB is depend on ProjectA and ProjectC. Therefore ProjectA and ProjectC 

should build before Project B. After all these modification sequence of the projects 

that need to build rearranged to ProjectC, ProjectA and ProjectB. System first 

completed the building of ProjectC. Then it completed the building of ProjectA and 

finally it completed the building of ProjectB. Example for this scenario is attached in 

Appendix A.3, Appendix A.4, and Appendix A.5. 



43 

7.3 Evaluate Reduction of Network Traffic 

Author‘s next objective was to reduce the next work traffic when users are dealing 

with building process. When users are using CruiseContrller to build projects 

sometimes all the team members are trying to access same build server at the same 

time. This will case to reduce network speed. In the implemented solution there is 

only one person to initiate the release process. When particular person initiate the 

release process relevant agents will be created automatically for each changed 

modules. Created agents will only communicate with each other internally. Means 

agents are created in a single machine and communication happen among them inside 

the machine only. This certainly reduces the network traffic with compared to 

existing system. 

 

7.4 Minimize the time spent on Release Management task  

In current system dependency identify at the release time when particular build is 

failed. Once build fails developer he has to go through the code modification done 

during previous release to now. By examine all those modifications developer has to 

identify what are the dependencies and what are not. Once the dependency order 

identified developer has to do the complete release process again. This subject to 

waste more time on release process as it has to do same task repeatedly. From this 

new solution all the dependencies are identified by tool it self at the beginning and 

relevant order will create by tool it self. That helps to complete release in one action. 

That reduce considerable amount of time as apposed to existing system.  

 

7.5 Reduce Exceptions occur in Compilation and Build process 

This objective is fulfilled along with the comments mentioned in the previous 

objective. As it mention system will go though the all modification and identify what 

are the dependencies for each module. In existing scenario developers might fail to 

notice some required modification done for one of their dependent modules. That will 

result to do the release again by considering that modification also. 

 

7.6 Optimize CPU memory usage  

When initially start the system there are no agents. Once any modification identified 

by the system agents will create. And they use computer memory to execute their 

task. Once it complete those agents get terminate from the system. Then those used 



44 

memory is released. That subject to utilize the computer memory allocate for agents. 

An example for release the memory is shown in the Appendix A.1 and Appendix A.2. 

In Appendix A.1 it shows memory usage taken to implemented tool in red color and 

in Appendix A.2 it shows that particular memory allocation is removed from the 

system. 

 

7.7 Summary 

In this chapter it evaluates the implemented solution on five major accepts. As the 

first objective it evaluates the reduction of human interaction by implementing this 

system. To evaluate it author gave simple example with three projects which are 

modified by making them dependent on each other. Once system executed, order of 

the projects are identified by the tool it self without any human interaction. Once 

build order is identified by the tool it self it automatically start the building jar files 

without any compilation problem. By doing so author was able to say that the first 

objective is achieved. As the same manners author has evaluate reset of the objectives 

as follows. Reduce network traffic is achieved by sending one request to processing 

place and start execution internally using several agents. Minimize the time spent on 

release management task is achieved by identifying dependencies in advance. Reduce 

Exceptions occur in Compilation and Build process is achieved by identifying 

dependencies in advance. Optimize the computer resources are achieved by managing 

the computer memory usage. In the next chapter it is going to discuss about 

conclusion on this solution with respect to discussed evaluation criteria. Also it is 

going to discuss about further improvements which can be done for this system to get 

the maximum use of it. 



45 

Chapter 8 

Conclusion and Further work 

8.1 Introduction 

In the previous chapter it has discussed each and every objective in a separate topic to 

make sure that it has been achieved. When going through each objective author has 

given appropriate screen shots as appendixes to show that particular objective is 

achieved. In this chapter it will discuss about the final conclusion about the 

implemented system, using Multi-agent systems technology. Subsequently it will 

discuss about set of problems which are identified while implementing the system in 

a separate heading call Problem encountered. After that it will discuss about 

limitations and further works of the implementation as separate sections.   

 

8.2 Conclusion 

Author‘s major aim was to develop a solution to automate software release 

management tool with some intelligence in order to reduce human interaction. In 

addition to that author has identified some major limitation of the existing release 

management tools by going through the several researches conducted in that area. 

Following are the objectives it was planed to fulfill when developing this system.  

 

8.2.1 Reduce Human Interaction 

One of the main objectives of this project is to reduce the human interaction to the 

system at its maximum. As dependency identification is replaced with multi agent 

technology functionality this task has been fulfilled. As discussed in the evaluation 

chapter it was able to ‗reduce the human interaction‘ by introducing the intelligence 

tool with the help of multi agent technology. 

 

8.2.2 Reduce Network traffic 

When it uses CruiseContrller to build projects sometimes all the team members are 

trying to access same build server at the same time. This will case to reduce network 

speed. In the implemented solution there is only one person to initiate the release 

process. It was able to ‗reduce network traffic‘ by implementing this solution as it 

reduce number of communication link that have to be done with outside parties. 

 



46 

8.2.3 Minimizing the time spent on release management task 

‗Minimizing the time spent on release management task‘ also been achieved as tool 

itself handle the release management task without human interaction. In practical 

scenario more time is wasted for release process as developers have to do the same 

operation over and over again because, sometimes they might forgot to update or 

check for dependencies. Once the compilations get failed they realize there is a 

problem on dependencies. In the new implementation it goes through all the modules 

with in the specified time duration and identifies dependencies in advance.  This help 

to reduce the time spent on release management task. 

 

8.2.4 Reduce exceptions occur in compilation and build process 

‗Exceptions occur in compilation and build process‘ can avoid as system will go 

thorough all the modification and identify exact dependencies for them before start 

the compilation and building. When doing the release process manually correct 

dependencies are identified if the communication among developers is in high level. 

System which is implemented is able to identify dependencies correctly if agents do 

the communication accurately. This will result to minimize the time taken for release 

management. 

 

8.2.5 Optimize CPU memory usage 

‗Optimize CPU memory usage‘ have been achieved as agents are only creating up on 

the request and once they are done system will delete them from the system. The 

memory and other resources that have been used for agent is released by doing so. 

This support is provided by the JADE toolkit to simplify the agent lifecycle 

managing. This objective was able to achieve as it implement the system using Multi-

agent systems technology. In agent technology agents are not highly depend on each 

other. They are independent entities where they interact with each other by message 

passing. Therefore once agent functionality is done it can be easily remove from the 

system as there is no hard link of that agent with other entities in the system.  

 

8.3 Problem Encountered 

Under this section it will discuss about different problems that have encountered 

while implementing this system and those are as follows. In this system it has used 

JADE toolkit as the agent development framework which is written using Java 



47 

programming language. Although it provides various features to implement Multi-

agent behavior, there are several problems encountered while implementing the fix 

using JADE. In JADE toolkit once agents are registered to the container it doesn‘t 

provide a support to retrieve details of the agents register for that particular container 

by giving agent‘s name or the ID.  As a solution for that it uses a common data 

collection to store details of each agent at the time system creates them.  

When updating local files from repository it check out complete project even though 

there are only few files are modified. For large projects this is a performance issue as 

it uses network resources heavily. But in current version controlling systems it is not 

allowed to keep sub directories on different versions. It expected to have them in 

same version. As a result of that system had to delete complete set of local files 

before checking out the new project to the local machine.   

 

8.4 Limitations 

By evaluating the system author has identified that there are some limitation exists in 

the system as follows. This system is developed to work on a local repository location 

which is provided by the system administrator at the time of execution. But in 

practical scenarios repository is located on a remote location where every one can 

access. This system only supports to compile client side projects. But it required to 

extend the system to compile and build server side projects as well. There can be 

situations where developers update the repository with compilation errors by mistake. 

By the time system compiling only those is identified. It will be good to have 

meaningful notification for the user about the problem and the location by going 

through the compilation exception provided by Java compiler. Once release process 

started it is required to avoid committing files to the repository until release process 

completes. If release process starts at the middle of the file update, compilation will 

fail as some of the file modifications are yet to commit. To avoid that it is good if it 

can implement a temporary repository location to save the modification until release 

process completes. Once release completes, modification in the temporary will copy 

back to the original repository by the system itself.     

 

8.5 Further works 

This system is not strictly test with heavy work load with a slow network. It should be 

test in that kind of environment and should fine tune the system to work in heavy 



48 

work load. System is basically implemented using a local SVNRepository where in 

real scenario it can reside in different network with different access rights. 

Accessibility of remote repository should be implemented to make real use of this 

implementation. In the current system dependency among modified projects are 

handle by passing messages among agents. But it is good if system can keep 

dependency information from the previous successful release in an understandable 

format to use in next releases. In this system compressed jar files are copied to a 

common location. When new compressed files are available, system replaces them 

with the existing. But in release management it is needed to keep information about 

history files also. As a solution, it will be good if system can copy the new 

compressed to a well standard folder structure which can be easily identified later on. 

 

8.6 Summary 

In this chapter it has discussed about how each objectives been achieved from this 

implemented system. Subsequently it has discussed about several technical 

limitations encountered (under problem encountered section) when implementing this 

system. One limitation is regarding JADE toolkit and other limitation is with 

TortoiseSVN version controlling tool. After the problem encountered section author 

has discussed about set of limitation which identified when evaluating the system. 

Unavailability of server side compilation process, Unavailability of temporary 

repository location to save updates can be consider as key limitations, identified in 

that section. As the last section it has discussed about set of future enhancement that 

should be done in order to make this system more user friendly and reliable. Making 

the system to work with remote repositories, keeping standard folder structure to copy 

build jar files are some of the key points which were discussed under the further 

works. 



49 

References 

 

[1] Andr´e van der H, Alexander L. (2003) Software release management for 

component-based software. University of California at Irvine, Irvine. 

University of Colorado at Boulder, Boulder. 

 

[2] Apache Ant (2010), The Apache Ant Project, Available at: http://ant.apache. 

org/  

 

[3] Apache Maven (2010), The Apache Maven Project, Available at: 

http://maven. apache.org/  

 

[4] CruiseControl Home (2008), CruiseControl Getting Started, Available at: http 

://cruisecontrol.sourceforge.net/gettingstarted.html 

 

[5] Dolstra E, De Jonge M, Visser E. (2004) NIX: A safe and policy-free system 

for software. 18th Large Installation System Administration Conference, 

Atlanta, Georgia, USA. 

 

[6] Eclipse Platform (2010), Eclipse Platform, Available at: http://www.eclipse. 

org/platform 

 

[7] Foundation for Intelligent Physical Agent (2010), FIPA specifications, 

Available at: http://www.fipa.org/specifications/index.html 

 

[8] Gerco B. (2006) A Case Study of the Release Management of a Health-care 

Information System. Centrum voor Wiskunde en Informatica (CWI), 

Amsterdam, The Netherlands. 

 

[9] Hyrum K. (2008) Release Engineering Processes, Models, and Metrics, 

University of Texas at Austin. 

[10] Java Agent Development Framework (2010), Open source platform for peer 

to peer agent based applications, Available at: http://www.jade.com 

http://www.jade.com/


50 

[11] Martin M. (2005) Quality Improvement in Volunteer Free Software Projects: 

Exploring the Impact of Release Management. Centre for Technology 

Management, University of Cambridge, Cambridge, UK. 

 

[12] Service-Oriented Architecture (SOA) technology resources (2010), Java 

Development Kit, Available at: http://searchsoa.techtarget.com/sDefinition/0,, 

sid26_gci868274,00.html. 

 

[13] Slinger J, Sjaak B. (2006) Ten Misconceptions about Product Software 

Release Management explained using Update Cost/Value Functions. 

Information and Computing Sciences Institute, Utrecht University. 

 

[14] Software Magazine (2010) - Configuration Management Is Key to Robust 

Software, Available at: http://www.softwaremag.com. 

 

[15] SVNKIT (2009), Subversion clients and IDE integrations, Available at: http:// 

www.svnkit.com  

 

[16] Systems Infrastructure Software Marketing Research - ResearchWikis (2006), 

Systems Infrastructure Software Industry, Available at: http://researchwikis.co 

m/Systems_Infrastructure_Software_Marketing_Research 

 

[17] The Tech Terms Computer Dictionary(2010), Compile Definition-Compile, 

Available at: http://www.techterms.com/definition/compile 

 

[18] The Trusted Technology Source for IT Pros and Developers (2002), A Cyclic 

Model for Software Deployment, Available at: http://www.informit.com/ 

articles/article.aspx?p=25026 

 

[19] Tijs V. (2007) Continuous Release and Upgrade of Component-Based 

Software, Centrum voor Wiskunde en Informatica, Amsterdam. 

 

[20] TortoiseSVN (2010), The coolest Interface to (Sub)Version Control, Available 

at: http://tortoisesvn.net/ 



51 

[21] Van der H, A. L. Wolf. (2003) Software release management for component 

based software. Software—Practice and Experience, 33(1), 77–98. 

 

[22] Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J, Bijlsma L. (2006) A 

Reference Framework for Software Product Management, Utrecht University. 



52 

Appendix A 

Appendix A.1 Memory usage in initialization  

In the Figure A.1 it shows the usage of the memory when initializing the tool with red 

color margin by using the Windows Task Manager.  

 

 

Figure A.1: Memory usage in initialization 



53 

Appendix A.2 Memory usage after termination 

In the Figure A.2 it shows the usage of the memory after terminating the tool. 

Memory used in initialization step gets cleared from the system once system get 

terminate.  

 

 

Figure A.2: Memory usage after termination  



54 

Appendix A.3 Initial state of agent creation 

In the Figure A.3 it shows the initial stage of creating agents when initializing the 

system. As it shows, agents do not start their communication with other agents at the 

initial stage.   

 

 

Figure A.3: Initial state of agent creation 



55 

Appendix A.4 Agents state after communication start 

In the Figure A.4 it shows the progress of each agent when their communication 

started. For each agent separate message dialog is displaying to show the progress. 

Message board is also displaying to show the progress of the whole agents.  

 

 

Figure A.4: Agents‘ communication progress 



56 

Appendix A.5 End state of agent communication 

In Figure A.5 it shows the module build order which has identified by communicating 

among agents. Once their communication is over all the agents are terminated from 

the system.  

 

 

Figure A.5: End of agents‘ communication 



57 

Appendix B 

Appendix B.1 Generated .Jar files 

In the Figure B.1 it shows set of generated .jar files after executing the implemented 

system. Only modified project‘s jar files will be generated once the system is 

executed. 

 

Figure B.1: Generated jar files 

 

Appendix B.2 Apache Ant script file 

In the Figure B.2 it shows the content of the Apache ant script file which is used to 

generate .jar files by compiling and building the modified project‘s source code. 

 

 

Figure B.2: Apache Ant script file 



58 

Appendix C 

Appendix C.1 Class Diagram for implemented Multi Agent System 

In the Figure C.1 it shows the class diagram for implemented system. Agent class is 

the super class which is located in JADE toolkit. ModuleAgent and MessageAgent 

are the classes which are written with customized features to fulfill requirements of 

agents.  

 

Figure C.1: Class Diagram 



59 

Appendix C.2 Sequence Diagram for implemented Multi Agent System 

In the Figure C.2 it shows the sequence diagram for the implemented Multi Agent 

System. It shows the sequence of each operation among each component by using the 

arrows.  

 

Figure C.2: Sequence Diagram 

 


